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ABSTRACT

Improvements have been made in the finite element model of the acoustic

radiated field from a turbofan engine inlet in the presence of a mean flow. The

problem of acoustic radiation from a turbofan engine inlet is difficult to model

numerically because of the large domain and high frcquencies involved. A numer-

ical model with conventional finite elements in the near field and wave envelope

elements in the far field has been constructed. By employing an irrotational mean

flow assumption, both the mean flow and the acoustic perturbation problem have

been posed in an axisymmetric formulation in terms of the velocity potential;

thereby minimizing computer storage and time requirements. The finite element

mesh has been altered in search of an improved solution. The mean flow prob-

lem has been reformulated with new boundary conditions to make it theoretically

rigorous. The sound source at the fan face has been modeled as a combination

of positive and negative propagating duct eigenfunctions. Therefore, a finite ele-

ment duct eigenvalue problem has been solved on the fan face and the resulting

modal matrix has been used to implement a source boundary condition on the fan

face in the acoustic radiation problem. In the post processing of the solution, the

acoustic pressure has been evaluated at Gauss points inside the elements and the

nodal pressure values have been interpolated from them. This has significantly

improved the results. The effect of the geometric postion of the transition circle

between conventional finite elements and wave envelope elements has been studied

and it has been found that the transition can be made nearer to the inlet than

previously assumed.
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I. INTRODUCTION

A. BACKGROUND

The two predominant sources of noise in a modern jet engine are the jet

noise and the fan noise. While jet noise provides a challenging opportunity for

research involving highly non-linear thermal and turbulence effects, the study of

fan noise has become equally important with the use of high bypass ratio turbofan

engines in civil aircraft. Although the bypass design has considerably reduced the

intensity of jet noise by lowering the jet velocity, there is a significant forward sound

propagation from the fan. This forward radiated acoustic field propagates through

the inlet duct to be radiated to the far field. Therefore the acoustic analysis of this

forward propagating noise involves the noise generation by the fan, propagation

inside the inlet cowling and radiation from the inlet to the far field. This radiated

acoustic field is highly directional in character with its directivity dependent upon

the frequency, the mode of the internally propagated acoustic waves, the inlet

geometry and the mean flow in and around the inlet. The purpose of this work is

to improve the modeling of the far field acoustical radiation from jet engine inlets

in low Mach number flows using the finite element method.

The mathematical modeling of the radiation of turbofan generated noise is

complicated by the fact that the wavelength of sound radiated may be much

smaller than the characteristic dimension of the inlet. To resolve the variation in

acoustic properties near the inlet, it is obvious that a fine mesh must be generated.

Further complications arise from the fact that sound is radiated to an infinite

domain and also because of the presence of a mean flow around the inlet.

The geometries involved in a turbofan engine inlet do not permit a classical

analytical closed form solution, except when extremely simplified assumptions are



made. A wide range of numerical techniques,which have beensuccessfullyused

in duct acoustics,can be thought of as an alternative. These include the Finite

Element Method (FEM), the Method of Weighted Residuals (MWR}, and the

Finite DifferenceMethod (FDM). Basedon previousexperience,the FEM showed

promise in the acousticradiation problem, provided there wasa way to model the

infinite domain effectively. Fortunately, there hasbeenmuch work to date in duct

acousticswhich relates to the generationand propagation of noise inside the duct.

The propagationof soundin the external region, which extendsfrom the throat of

the inlet to the far field, presentsa more challengingcomputational problem and

involves the imposition of proper radiation type boundary conditions at a finite

but distant boundary. In this investigation, the radiation boundary condition is

imposedby the useof waveenvelopeelementsin the far field.

D, LITERATURE REVIEW

The theory relevant to this problem spans many fields in acoustics. Rather

than discussing each one of them, this section emphasizes the contribution in the

areas which have a direct link with the problem. Special focus is on duct acoustics

and the inlet/radiation problem.

In most practical problems concerning the propagation of sound in ducts, no

analytical solution is possible, unless extremely simple geometries and assumptions

are considered. Therefore, the three main numerical techniques which have been

used in analysis are the Finite Element Method (FEM), the Method of Weighted

Residuals (MWR} and the Finite Difference Method (FDM).

Finite element methods have been sucessfully used to model various problems

in duct acoustics. Astley and Eversman [1], and Eversman, Astley and Thanh [2]

studied area variation in two dimensions and axisymmetric ducts with different



FEM formulations and compared them with MWR results. Majjigi, Sigman and

Zinn !31 used various types of finite elements in the study of simple hard walled

acoustically treated ducts and compared with results produced by a FDM for-

mualtion. Various FEM methods have been used to solve the acoustics problem

with a mean flow. Tag and Lumsdaine [4] used a formulation based on velocity

potential to save disk storage, while Baumeister [5] indicated that the assumption

of irrotational acoustic perturbation is valid only for an irrotational mean flow.

The Method of Weighted Residuals techniques in duct acoustics has been

useful in situations where appropriate basis functions are obtainable such as hard

walled or lined ducts with or without flow. Eversman, Astley and Thanh [2]

compared the results of MwR and FEM methods as mentioned earlier. Eversman

and Astley [6] investigated the accuracy of MWR compared to exact calculations

of acoustic transmission based on a one dimensional model for nonuniform ducts

containing high speed subsonic flow.

Finite difference methods have not been used extensively in acoustics. How-

ever, in non-linear problems, for simplified one dimensional models, it seems to

have a distinct advantage over MWR and FEM. Walkington and Eversman [7]

studied shocked acoustic waves with a one dimensional model using FDM meth-

ods. Walkington [8] proposed several schemes to formulate such problems, but

suggested that extension of the non-linear problem to higher dimensions would be

difficult.

The following discussion highlights previous investigations carried out in the

field of inlet acoustics and the radiation problem. Most work involving inlet acous-

tics has been experimental in nature, however recently some numerical compar-

isons have been made. ViNe and Silcox [9], and Silcox [10] presented experimental

results for some standard inlets used by NASA for different flow and geometry
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configurations. Several analytical and numerical methods have been proposed to

solve the inlet acoustics problem. Ray acoustics theory (for example Kempton and

Smith ill]) has been combined with numerical flow solutions to analyze various

inlet geometries. Meyer, Bell and Zinn [12] considered inlet shape and liner de-

sign by computing far field directivities by an integral method. They numerically

solved a Helmholtz equation and made an effort not to decouple the far field and

inlet solutions. Meyer, Daniel and Zinn [13] used the same method as described in

reference [12] and gave comparisons with experimental results for radiation from

a pipe and a jet engine inlet. For further improvement, Horowitz, Sigman and

Zinn used a hybrid FEM-integral technique for cases without mean flow [14], then

extended this to cases involving mean flow [15]. The technique uses a FEM for-

mulation to analyse the duct interior and then an integral formulation for the far

field. By guessing a duct exit impedance and solving a duct problem, the far field

radiation is solved using a Green's function. The outer boundary impedance is

then compared to a Sommerfeld condition and the exit impedance is corrected

iteratively until the results converge. Baumeister [16] used these methods to com-

pare with experimental data for a JT15D engine under static conditions with a

low Mach number flow into the inlet.

The iterative procedure proposed by Zinn et al. turns out to be lengthy and

costly in terms of both computational time and storage. To overcome this problem,

Astley and Eversman [17] employed FEM, wave envelope and infinite element for-

mulations, and succesfully modeled the sound field for a one dimensional test case

with no flow. The concept of infinite elements, where the element shape functions

simulate decay to model an infinite domain, was first proposed by Bettess [18] in

1977. The application of infinite elements to wave propagation was significant,

but Astley and Eversman found that _wave envelope" elements, which simulate

4



wavelike behavior in their interpolation functions, model far field acoustic radia-

tion better than infinite elements. In [19] they laid the foundation for using wave

envelopeelements for inlet radiation in the presence of a flow. They emphasized

that the use of wave envelope elements relies on the assumption that in the far

field the sound field approximates that produced by a point source. This allows

for a coarse mesh in the far field thereby drastically reducing the computational

time and storage requirements. Astley [20] then validated the concept with simple

test cases.

This work is an extension to that done by Eversman, Parrett, Preisser and

SUcox [21], where they have presented several contributions to finite element mod-

elling of acoustic radiation from turbofan inlets. This included the use of a tech-

nique combining finite elements in the near field and wave envelope elements in

the far field. The use of a frontal solution scheme of Irons [22] resulting in dras-

tic reduction of in-core storage was also significant. The numerical results were

verified by comparison with both model scale [10] and full scale [23] test data.

(_, ENHANCEMENTS OF THE TURBOFAN FINITE ELEMENT MODEL

The finite element model of the jet engine inlet developed in [21] had some

shortcomings which have been addressed in this study. The finite element mesh

of the original model had elements whose aspect ratios i were not properly main-

tained. The zone of conventional finite elements outside of the nacelle was orig-

inally generated in two adjacent regions. This was found to be superfluous and

was therefore reduced to a single region. In this single region, conventional eight-

node isoparametric finite elements were generated with their radial thicknesses

tAspectratioofa two dimensionalfiniteelementistheratioofany two adjacentsidesofan
element.Ruleofthumb saysthatitshouldnot be more than4:1tobe on thes_feside.



increasing in geometric progression, thereby maintaining aspect ratios of the ele-

ments below the safe allowable value.

The time invariant mean flow problem of the model has a Laplace's differential

equation with Neumann boundary conditions and the previous solution technique

to this problem was not theoretically rigorous. The boundary conditions of the

problem have been modified and a proper solution technique has been incorpo-

rated.

A finite element duct eigenvalue problem has been solved on the fan face mesh

and the resulting finite element modal matrix has been used to model the acoustic

potential at the fan face boundary as a combination of incident and reflected

uniform duct eigenfunctions. This boundary condition has been implemented in

the acoustic radiation problem.

The problem has been set up with both eight and nine-node quadratic isopara-

metric elements and results from both the cases have been compared. In the post-

processing of the solution, the acoustic pressure was observed to be discontinuous

across inter-element boundaries. This is expected because it can be shown that

the acoustic potential solution is continuous across inter-element boundaries, but

its derivative is not. In the original model, the acoustic pressure at a node was

calculated from the four elements sharing that node and the value of the pressure

at that node was defined as the average of the these four values. This technique

gave inadequate results. The improved model evaluates acoustic pressure at gauss

points inside the element and interpolates the pressure from the interior points to

the nodes. This has resulted in significantly better results.

The position of the transition circle, which separates the conventional finite

element region in the near field and the wave envelope region in the far field, was
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seen to be creating a significant effect on the final results. It was found out that

the wave envelope elements were not only capable of modeling the far field but

also the moderately near field outside the nacelle. Therefore, the transition circle

could be brought in much closer to the inlet than thought before, and this has

lead to better results with drastic reduction in the number of degrees of freedom.

This is probably the most significant result of this study.
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II. THEORETICAL FOUNDATIONS

A. THE PROBLEM

The problem posed here is that of a stationary turbofan inlet with internal

and external mean flow. The results obtained are applicable for an observer fixed

to the inlet. For an observer on the ground, Doppler shift corrections have to be

applied to obtain the proper results.

The turbofan inlet is assumed to be axially symmetric, as is the flow field in

and around the inlet. The acoustic field generated within the inlet and radiated

to the far field is generally not axially symmetric, but is conveniently expressed in

terms of Fourier components in the angular coordinate. Therefore, it is appropriate

to express the inlet geometry and the entire computational domain in a cylindrical

coordinate system.

Figure 1 shows the top half of the symmetric inlet geometry in an x-r plane.

The surface Cn is the nacelle. The nacelle is regarded impervious to both steady

flow and acoustic perturbations. The surface C! (fan plane) is the one on which

the sound source, i.e. the turbofan, is defined (it may or may not have a center-

body). The acoustic pressure field on the fan face is modelled a.s a combination of

incident and reflected (positive mad negative) uniform duct eigenfunctions. The

surface C, (baffe surface) is a boundary of the computational region which for

a completely accurate representation would be the negative x-axis. However, in

order to decrease the size of the domain, and also to avoid modeling the rear of the

engine, C, is chosen at least 90 ° past the direction of maximum acoustic radiation.

It may be thought of as a baffle which would admit flow through, yet interfere

with the forward radiated acoustic field minimally. The boundary Coo is the outer

boundary of the computational domain in the far field such that at points on Coo

8
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the acoustic fieldcan be viewed locallyas propagating plane waves. Thus the com-

putational domain is made finiteby imposition of a suitable radiation boundary

condition at a distant but finiteboundary. The boundary Coo should be several

duct radiifrom the inlet.The large domain and the finemesh near the inletgives

riseto very large number of degrees of freedom in the finiteelement model. The

boundary conditions willbe dealt with in more detailin a latersection.

To minimize the problem of huge data storage, an axisymmetric formulation

based on velocity potential has been adopted, thereby reducing the number of un-

knowns to one per node. The assumptions of an inviscid fluid and also that of an

irrotational flowfield has been made (both in steady flow and acoustic perturba-

tions). The mean flowfield isassumed to be steady, uniform, of low Mach number

and parallel to the centerline of the engine. These assumptions axe quite valid for

a jet engine during take off or landing approaches.

B. THE FIELD EQUATIONS

This sub-sectionoutlinesthe derivationof the steady mean flow and acoustic

fieldequations. Itisassumed that the medium isinviscidand non heat conducting

and that allthe processes axe isentropic.The fieldequations have been derived in

non-dimensional form. Reference density p, and referencespeed of sound c, are

defxned at a large distance from the inlet.The reference length istaken a.sthe

duct radius R. Pressure is non-dimensionalized by p,c, _, density by p,, velocities

and speed of sound by c,, velocity potential by c,R and time by R/c,.

The governing equations for the problem may be written in nondimensional

form as

10



Mass conservation :

Op'

at-; + V • (p'V') = o
(1)

Momentum conservation :

OV'

-_- + (V' • V)V'

I

= --:vp (2)

Equation of state :

where `7 is the ratio of specific heats. The non-dimensional speed of sound can be

written as

(_'),= `7_L,= (y)',-' (4)
P

(_. VELOCITY POTENTIAL FORMULATION

As stated previously, a velocity potential formulation has been proposed to

reduce the computational time and storage requirements. Since the flow field is

assumed to be h-rotational, the non-dimensional velocity V' can be related to the

non-dimensional velocity potential @' by

V' =W' (5)

The mass conservation equation (1) in terms of density and velocity potential

becomes

op'
(/re') o (6)

-t'''tO+ V • =

If it is assumed that the reference conditions are taken to be stagnation con-

ditions, i.e. IV'I = 0, c' = 1, O/at = O, the momentum equation (2) in terms of

density and velocity potential may be cast as

(c')' = 1-('7- 1)['_t' + 1( v_'s V¢')] (7)

11



or,

, .{a¢'. = [1- (_- 1) -E/- + (re'. v¢')}]'/("-') (s)

D. LINEARIZED PERTURBED EQUATIONS

It is assumed that the acoustic quantities consist of small perturbations su-

perimposed on a steady mean flow field, so that

¢' = ¢o + ¢ (9)

p'=po+p (10)

where o subscript denotes the mean flow field variables and the unsubscripted ones

represent the acoustic perturbation variables.

Substitution of equations (9) and (10) in equations (7) and (8) and lineariza-

tion to first order in acoustic perturbations yields

po = [1 (3'- 1)V¢ °• V¢°],/(._-,) (11)
2

poIa¢
p = -_-_o2,_- + (V_b, • V¢)] (12)

= p_-! is the local speed of sound in the mean flow.where, co =

Similarly, linearization of the mass conservation equation (6) to first order in

acoustic perturbations yields

ap + x7. (po_¢o + pore + pX?¢o) 0 (13)
at

Equation (13) is a linear superposition of the mass conservation equation for

the steady mean flow and the mass conservation equation for the acoustic flow.

For steady mean flow

V • (poV¢o) = 0 (14)

12



and for acoustic perturbation

0p + V • (poV¢ + pV¢o) 0
Ot

(15)

Of the field variables, the physical quantity that can be measured for any

comparison between theory and experiment is the acoustic pressure. The acous-

tic pressure is related to the acoustic potential through the linearized isentropic

equation of state 2 by

a¢ (16)
p = -po[_ + CV¢°• v¢)]

Equations (12) and (15) are the basic field equations for the acoustic pertur-

bation flow. Equation (12) can be used to eliminate p in equation (15) to yield

a _generalized wave equation _ in ¢. Equation (16) can then be used to find the

acoustic pressure field from the acoustic potential field obtained from a solution

of (15). The velocity potential field of the steady mean flow needs to be computed

using equation (14).

E. THE FINITE ELEMENT MESH AND WAVE ENVELOPE CONCEPT

The problems for both the mean flow and the acoustic perturbation have been

solved on the same mesh using a standard Galerkin finite element procedure. This

sub-section discusses the finite element mesh and introduces the concept of wave

envelope elements, with the next section discussing the mesh generating scheme

in detail.

As shown in Figure 1, the computational region is divided into two major

regions for conveniently constructing the mesh. The curve CI marks the border

2The li_earized iJentropic equation of state is

p = pc_
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between these two regions. It is important to note that there is a difference in

the physics involved in generating the mesh in these two regions. In the inner

region, inside the curve C1, a conventional finite element mesh based on quadratic

isoparametric rectangles has been used. The mesh spacing in the general direction

of noise propagation should be maintained at 4 to 5 elements per wavelength. The

mesh spacing across the inlet is made fine enough to resolve the transverse modes

present. In the outer region between C1 and Coo, a transition occurs between the

fine mesh and elements which are several wavelengths long. These outer layers of

elements are called wave envelope elements.

The major drawback of using a conventional finite element mesh through-

out the whole domain is apparent when dealing with realistic frequencies. The

variations of the shape functions of an eight or nine-node isoparametric element

are quadratic in the local coordinates within each element. Several elements are

therefore required to accurately represent a single wavelength variation of the so-

lution in the radial and angular directions. For realistic frequencies, the typical far

field wavelength of the acoustic field may be several orders of magnitude smaller

than the overall dimension of the domain. This would demand a very fine mesh

in the far field and therefore the number of degrees of freedom would become

prohibitively large.

To reduce the dimensionality of the problem, wave envelope elements have

been used in the outer region as an alternative. It has already been assumed that

Coo is sufficiently far away from the inlet so that the radiated field will behave

locally as a plane wave propagating outwards from the origin and normal to Coo.

Therefore, in the outer region, the inlet is assumed to behave as a stationary

complex source in a uniform flow. Hence the acoustic field in the outer region is

assumed to be propagating outward with exponential character e -_"''_(_''}, where

14



rj, is the frequency and _b(x,r) is the phase, being constant on constant phase

surfaces. The form of the constant phase surfaces can be visualized by considering

a simple source in uniform flow (see Figure 2). Note that Coo should be at a

distance from the inlet sufficient for the exterior flow field to be uniform. The

constant phase surfaces are found to be

-Mx + .v/x 2 + B2r 2 (17)

where B 2 = 1 - M 2. They are circles (of radius R,) of the form

(x - MR,) 2 + r 2 = R 2, (18)

The Mach number M here is the Mach number of the exterior flow.

The shape/basis functions of a typical wave envelope element in the outer

region are modified from the usual quadratic form to incorporate the complex

exponential propagation corresponding to a locally outward travelling wave, and

the reciprocal decay with distance corresponding to a simple source (the velocity

potential field of a simple source varies as 1/r where • is the radial distance from

the origin). Since the gross features of the harmonic and reciprocal decay solu-

tion are incorporated into the shape functions, the elements in the outer region

are required to resolve only the discrepancy between the actual solution and the

implied harmonic and amplitude variations included in the shape functions. As a

result, the wave envelope elements can afford to be several wavelengths long and

the dimensionality of the problem reduces dramatically.

The modified shape function of node j in a wave envelope element is

, Rj _+n,(¢,-¢i)
N =NiRo (19)

where,

R = x/x'+ (20)

15



and

_ -Mz + R (21)

as shown earlier.Here Nj isthe standard shape function corresponding to the jt_

node. The modified shape function of the wave envelope element assumes a value

of unity at itscorresponding node and zero at allother nodes, thereby preserving

the fundamental property of basis functions. Since the wave envelope elements

represent the fieldgenerated by a simple source in uniform flow, it isexpected

that the elements willbe bounded by linesof constant phase and acoustic ray

paths from the origin as shown in Figure 3.
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Ill. MESH GENERATION SCHEME

This section discusses the generation of the finite element mesh which plays

a vital role in the formulation of the problem. Both eight-node and nine-node

quadratic isoparametric elements have been used for the analysis. The mesh gen-

eration scheme is more or less the same for both the elements, only the connectivity

and certain other minor parameters need to be altered. Figure 4 shows an eight

and a nine-node parent element with the local numbering of their nodes. For the

convenience of constructing the mesh, the entire computational domain has been

divided into three regions. Figure 5 illustrates the three regions clearly. Region

I occupies the interior of the nacelle, region II extends from outside the inlet to

the boundary C1 and region III (the wave envelope region) extends from C1 to the

outer boundary CM.

A. REGION I

Due to the complex nature of the acoustic field inside the nacelle, a fine mesh

is generated in order to resolve the variation in acoustic properties. It is separated

from region II by a circle which we shall call the highlight circle. The highlight

circle is drawn from the nacelle tip (also known as the highlight) in such a way

that its center lies at the point of intersection of the x-axis and a line passing

through the tip of the nacelle at 45 ° with the z-axis (see Figure 6).

The inner surface of the nacelle C,, extends from the fan face to the tip of

the nacelle. The centerline of the inlet geometry extends from the intersection of

the centerbody curve with the x-axis and the intersection of the highlight circle

with the z-axis. Three-node quadratic line elements lie along the inner surface of

the nacelle, the centerbody and the centerline. The coordinates of these nodes are

given as input to generate the mesh in region I. The number of input nodes on

18
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the inner surface of the nacelle and on the centerbody and centerline is the same,

to produce a mesh of generally rectangular elements.

The input data file for the mesh generation program is prepared by a cubic

spline interpolation routine. The configuration for each of these curves in the inlet

geometry (i.e. inner surface of the nacelle, centerbody and centerline) is fed into

the interpolation program in the form of discrete data points. The program then

fits a smooth curve through these data points to represent that curve by solving a

tridiagonal system of equations. Convenient nodal points are then chosen on the

interpolated curve at any desired fraction of the total length. The node points on

the centerbody and centerline are generated first. These are followed by the node

points on the inner surface of the nacelle which are at the same fractional distance

from the fan face (fraction based on the curve length) as their corresponding node

points on the centerbody and centerline. This has been done to prevent distortion

in the mesh.

The fan face has also been divided into several elements not necessarily of

equal width, each to be represented by a three-node quadratic line element. Figure

7 illustrates the meshing scheme in this region. The "vertical" element boundaries

inside the nacelle are formed by arcs of circles. These arcs are drawn through

corresponding nodal points on the upper and lower boundaries (for example, the

fifth node on the nacelle inner surface and on the centerbody and centerline,

counted from the fan face) with the center of the circles lying on the x-axis. Such

circles are easily constructed as illustrated by Figure 8. (zl, y_) and (z2, y2) are

coordinates of any two corresponding nodal points on the nacelle inner surface and

the centerbody and centerline respectively. Then the x-coordinate of the center

of a circle passing through these two points and having its center on the x-axis is
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the z-axis is given by

(22)

/
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Figure 8: Geometry of a circular arc in region I

Now, to preserve the rectangular mesh, each of these circulararcs should

have the same number of three noded line elements on them and this should

equal the number of three noded lineelements on the fan face. Therefore, each of

these arcs is divided into the same number of elements with the same fractional

length (fractionbased on the arc length) as on the fan face. Thus, the nodal
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elements on each of these circular arcs is determined. The nodal coordinates are

stored in a topology array AD(I, J, K) where I is the global element number, J is

the local node number and K = 1 assigns the x coordinate, K = 2 the r coordinate,

respectively, to the array. Proper connectivity relating the local node to its global

numbering is also generated and stored in a connectivity array AN(I, J), where

I = element number, J = local node number. This array stores the global node

number for each node.

The global node numbering goes from top to bottom of each of the circular

arcs (see Figure 9) starting from fan face onwards. The element numbering is also

down each column of elements between adjacent circular arcs and sequenced from

fan face onwards (see Figure 9).

B, REGION II

The mesh in region II becomes polar in nature essentially because of the

configuration of the domain outside the inlet duct. Region II is separated from the

wave envelope region III by a constant phase circle, as described previously, whose

z-intercept is given as input. The constant phase circles are expanding radially

with the local speed of sound (c) and their centers are moving away along the z-

axis with the speed of uniform exterior flow (U) (see Figure 10). This phenomenon

is very similar to the successive circles of outward ripples created on the surface of

still water when a pebble is thrown into it. The only difference is that in still water

the centers of the successive layers of outward moving circular ripples coincide and

here the centers of the constant phase circles move at a constant velocity.

From Figure 10, we obtain the equation of a constant phase circle (of radius

Re) displaced along the positive z-axis with velocity U (positive direction of U is

24



indicated in Figure 10)

(z - Ut) 2 + ,.2 = R:

where Rc = ct is the radius of the circle Therefore,

(23)

(x - uRc) 2 + r 2 = R_ (24)
C

or,

(z - MR,) 2 + r 2 = R_ (25)

where M is the Mach number of the uniform exterior flow s. By setting • = 0 in

equation (25) we obtain the x-intercept of the circle

= (M 5= 1)R, (26)

The positive sign corresponds to the x-intercept on the positive z-axis,

= (I + M)R,

while the negative z-axis corresponds to the z-intercept on the negative z-axis,

2,=-(1-M)R,

The circles can be expressed in polar coordinates R and 0 by,

(Rcos#- MR,)' + (RsinO)' = R 2, (27)

Solving for R in terms of # yields,

R = R,[_I - M' + (Mcos#)'- McosO] (28)

Hence, the radial distance R at every angular position # on the outer boundary of

region II is known.

SEquition 25 i_ similar to equation 18 in Section II.
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The outer surface of the nacelle (portion of the nacelle surface C, starting from

the baffle Cb to the highlight) which forms a part of the inner boundary of region

II has three-node quadratic line elements along it. The input data preparation for

this region is the same as in region I. The configuration of the curve representing

the outer surface of the nacelle is fed into the cubic interpolation routine in the

form of discrete data points. The program then fits a smooth curve through them.

Suitable nodal points are then selected at any arbitrary distance along the curve.

Since the mesh generation in region I precedes that in this region, the coordinates

of the three-node line elements lying along the highlight circle arc are known. The

nodal points on the outer surface of the nacelle and on the highlight circle arc

serve as input for the mesh generation in region II (see Figure 11).

In this region and also in the subsequent region III, the nodes have been

generated on and along the acoustic rays from origin. Since the mesh is polar,

the angular thickness of the elements increases with radial distance because the

acoustic rays are radial lines diverging from the origin. To maintain proper aspect

ratio of the elements in this region, the radial thickness of the elements should

also increase accordingly along acoustic rays moving away from the origin. Now,

corresponding to each nodal point on the outer nacelle surface and highlight circle

arc, an acoustic ray is defined and its point of intersection with the outer bounding

circle of region II is calculated (see Figure 11}. Therefore, the radial distance along

that ray in region II is known. This radial distance is then divided according to

the number of elements required along the general direction of noise propagation,

in geometric progression, from the inner boundary to the boundary C2. From

elementary mathematics, we know that if rl,r2, .... r_ are n members of a series in

geometric progression, then the members are related to each other in the following
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way,

r2 -- crl /

r 3 _ ¢r 2

rn = Crn-1

(29)

where c is the common ratio of increment• So, the last member is related to the

first member by

r. = c"-lrl (30)

Referring to Figure 12 where an acoustic ray intersects with the two boundaries

of region II, it is obvious that the first and the last members of the geometric

progression series, i.e. intersection points on the inner boundary and the outer

bounding circle C1 respectively, are known. Since the number of elements n in the

radial direction of region II is an input, the common ratio of geometric progression

is found out using equation (30),

common ratio = (outer bounding circle_ _
\inne"---_ bounding _J

Once the common ratio is known, the successive intervals are found out by multi-

plication with the common ratio as in equations (29). Hence, the nodal points of

the line elements along that acoustic ray are located. Geometric progression pro-

rides a gradual increment in the radial thicknesses of elements which is sufficient

to a maintain proper aspect ratio.

The nodal coordinate values are stored in rectangular cartesian form in a

topology array AD(I, J, K) as mentioned before. The connectivity array AN(I, J)

is also created. As illustrated in Figure 13, the element numbering in this region,

continues after region I and goes down each column of elements running from the

baffle surface to the x-axis. The global node numbering also goes down each side

of the element columns sequenced from the inner boundary consisting of the upper

surface of the nacelle and highlight circle arc.
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C. REGION III

Region III which consists entirely of wave envelope elements is bounded by

the transition boundary Cl, the outer boundary Coo, the baffle Cb and the x-axis.

The wave envelope elements, as discussed before, are large elements bounded by

acoustic rays and constant phase circles. The string of elements between any two

successive constant phase circles is referred to as a wave envelope layer. The input

for mesh generation in this region is the number of wave envelope layers and the

z-intercept of the constant phase circles bounding each layer. Using equations (26)

and (28), the inner and outer radii of the constant phase circles bounding each

such layer is determined. The mean radius of each layer, which is just the average

of the inner and outer radii, is also calculated. Since the mesh generation in region

II is complete at this stage, the three-node line elements (note that a three-node

line element forms a side of an eight or nine-node isoparametric element) on the

outer bounding circle Ci of region II have been located completely and their global

numbering is also known. Therefore, corresponding to each nodal point on C1, an

acoustic ray is defined (see Figure 11) and thereby its points of intersection with

the inner, mean and outer radii of each wave envelope layer are calculated. The

rectangular cartesian coordinate values of these intersection points on which the

nodes lie are stored in the topology array AD(I, J,K). The connectivity array

AN(I, J) is similarly calculated as in region II. The element and the global node

numbering follows after region II and is similar to region II. Since the mesh in

region II is quite fine and that in region III is coarse, care should be taken to make

a gradual transition in the size of the elements.

After the mesh is generated, a connectivity check is performed to ensure a

proper connection between local and global numbering of nodes and uniqueness

of nodal coordinate values.
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D. IDENTIFICATION OF THE BOUNDARY ELEMENTS

Identificationof the boundary elements isnecessary for proper imposition of

boundary conditions in the finiteelement calculations. After the mesh is con-

structed in the whole domain, the topology (i.e.nodal coordinate) array and the

nodal connectivity array for the line elements on each of the boundaries of the

domain are calculated separately. An element identification array NETYPE is

set up and different values are assigned to it for different boundary elements for

identification purposes.

The setting up of topology and nodal coordinate arrays for each boundary

surface is accomplished in several subroutines. The nodal connectivity array for a

boundary is ANL(I, J), where I = element number from 1 to the number of line

elements along that boundary, and J = the local node number in a quadratic line

element. This array defines the global node number of the corresponding node on

that boundary. The topology array is ADL(I, J, K), where I and J are the same

as above and K = 1 defines the global z-coordinate value of the node, whereas

K -- 2 defines the r-coordinate value of the node.

An input and output data description for the mesh generation program has

been described in the appendix.

E. SOME COMMENTS ABOUT THE FINITE ELEMENT MESH

The acoustic radiation problem is highly mesh dependent but the mean flow

problem is not very sensitive to the mesh parameters. Since both of these problems

have been solved on the same finite element mesh, a mesh conforming to the

acoustic parameters is desired. One of the important factors governing the mesh

is the number of elements per wavelength which must always be maintained above
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a minimum value in the main direction of noise propagation to resolve the fine

variation in acoustic properties. According to the rule of thumb the minimum

ratio of the number of elements to the wavelength for quadratic elements should

be 4 or 5. Here a somewhat crude estimate has been made to evaluate that ratio

along the main direction of sound propagation.

Since the nondimensional input frequency rl, (it is an input to the problem)

of the sound source on C! is known, we obtain a ratio of the effective wavelength

A, (the wavelength of the sound radiated is altered in the presence of mean flow)

to the reference duct radius R in the following way :

_R 21rR

c

since

A.= (1-M)A

therefore,

21rR (1 - M)
_" = ,k'-'_

or,

A.--.t'- 2z'(1- M) (31)
R 7,.

The Mach number M is positive if directed towards the inlet. Now if the number

of elements per duct radius length is NR and A is the average width of an element

within that length, then
R
-- -- .N'R
A

Therefore, using equation (31), the ratio of the number of elements per unit duct

radius can be expressed as

7, (32)
- 2 r(1 - M)

where Nx.(= A,/A) is the number of elements per effective wavelength. For a

specified number of elements per effective wavelength (for the elements used here

33



N_, is the goal), equation (32) can be used to determine the number of elements

per unit of nondimensional length required. This varies as the flow towards the

inlet varies, and would generally be highest within the nacelle near the fan face.The

number of elements in the transverse direction within the nacelle or in the angular

direction in region II is not as critical and is adjusted to maintain the aspect

ratio of the elements. Another very important mesh parameter affecting the final

solution is the geometric position of the outer bounding circle C1 (the transition

circle) of region II. This is discussed in a later section.

Since the position of the constant phase circlesbordering the wave envelope

layers are user input, care should be maintained to make a gradual transition

from the small conventional finiteelements to the relativelylarge wave envelope

elements. For this,the user should be aware of the radialthicknessof the lastlayer

of conventional elements along CI. Since the radialthicknessesof the elements in

region II have been incremented in geometric progression,the radialthickness of

the lastelement in region IIon the z-axis is

ar= cn-1)ro

where c is the common ratio of increment, n is the number of elements radially

in region II and ro is the z-intercept of Cl. This information is valuable to the

user for making a smooth transition from region II to III. An example of a finite

element mesh with 3441 elements (52 elements along the z-direction in region I,

40 elements radially in region II and 9 wave envelope layers) and 10624 degrees of

freedom is given in Figures 14, 15, and 16, where Figures 15 and 16 show the mesh

in regions I and II in detail. The transition circle C1 starts at a nondimensional

distance of 3.5 from the origin. In region I, a very fine mesh has been generated

in the z-axis direction due to the complexity of the acoustic field. In the direction

of the duct radius the mesh has been made gradually more coarse towards the
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centerbody since the region quite close to the z-axis does not usually fall in the

main direction of sound propagation. Outside the nacelle, in region II, the mesh

is coarser than in region I, but still quite dense in the sector bordered by 30 ° on

the lower side and 85 ° on the upper side. This sector usually corresponds to the

main direction of sound propagation at moderate frequencies (for example, 15.0)

and low angular mode numbers (for example, 10). The mesh shown as an example

will be suitable for frequencies upto 15.0. At frequencies higher than 15.0, the

mesh must be refined in the radial direction to satisfy the number of elements per

wavelength criterion. The wave envelope elements in the region III allow us to

have a very coarse mesh in the far field.
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IV. UNIFORM DUCT EIGENVALUE PROBLEM

For the radiation problem the eigenvectors representing the acoustic modes in

a uniform duct axe used to implement boundary conditions at the fan face. They

axe conveniently calculated when the mesh is generated. The formulation of the

eigenvalue/eigenvector problem is discussed in this section.

A. ONE DIMENSIONAL BOUNDARY VALUE PROBLEM

The fan face CI is taken to be at a locally uniform part of the inlet. To specify

the acoustic potential there, a finite element eigenvalue problem has been solved

in the inlet duct on the fan face. The eigenvalues and eigenvectors obtained from

the problem axe used later to evaluate the boundary condition at the fan face for

the acoustic radiation problem. The nondimensional acoustic field equation for

/////A

r

"///////H/l/I///

R
M

circular duct

//////, M///////////////

r

ri

E
M

annular duct

Figure 17: Duct geometry

the axisymmetric duct with uniform mean flow shown in Figure 17 is

(_+M )'¢-V_¢=0 (33)
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where M is the local Mach number of the uniform flow. It is assumed that the

acoustic potential in the case of a harmonic acoustic source on the surface C I,

with time dependence d "'t, has axial and azimuthal variations of the form

¢ = ¢,(r)e_(", '-_e-_,*) (34)

where rh = wR/c_ is the local nondimensional frequency (cl is the local speed of

sound in the duct), k= is the axial wave number and m is an integer representing

the angular (spinning) mode number 4.

Substitution of equation (34) in (33) yields

d=¢, 1 de, Mk= )_ k_ rn 2
dr-'-_- + -_ +[r/_{(lrdr rh -( r/, )'} - -_-]¢, - 0 (35)

It is important to note that the Mach number M in the above equation (35) is the

local Mach number at the fan face.

Define

Mk=. =' n_'l(1 ( )'1,_,,..= _)-

and substitute in equation (35) to obtain Bessel's equation

(36)

d2¢, 1 de, m _

d,-_+ ; _ + (_ - 7 )¢ = 0 (37)

Since the duct has hard walls, the boundary condition prescribed at the wall

V¢ s n = 0 (n is the unit outward normal vector on the duct wall) when inter-

preted in the one dimensional case yields,

• For Circular Duct A circular duct corresponds to the case with no centerbody.

at r = 0, ¢, is finite (38a)

4The factor e-_''saccounts for the spinning acoustical modes generated by steady blade loading

or by the interaction between the rotor and the exit guide vanes.
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de,
at r-R, dr =0 (38b)

• ['or Annular Duct An annular duct corresponds to the case with a centerbody.

de,
at r = r_, dr -0 (39a)

de,
at r = R, d"'_" = 0 (39b)

B. FINITE ELEMENT FORMULATION

A standard Galerkin finite element formulation has been used with three-node

quadratic Lagrangian elements. A finite element mesh that fits these elements on

to the fan face has already been dealt with in the previous section. The differen-

tial equation (35) and the boundary conditions (equations (38) and (39)) which

compose the boundary value problem for both the circular and the annular duct,

are approximated by a weak form of the boundary value problem for both the

circular and annular duct.

Let ¢ : fl _ R be a smooth function where, the domain 12 is [0, ro] for

a circular duct and [r_, ro] for an annular one. Multiplication of the differential

equation (35) with the test function ¢ and integration over the domain yields

n . d=_b, 1 d_b, rn=_b["_"r= + ---rdr + (*:_ - --)¢,]dflr, = 0

or

fn d de, m __r (r--_-r )_bdr +/n(_2m r, )¢,_brdr = 0 (40)

Integration of the first term in equation (40) by parts, yields

- --_-)¢,d2rdr - 0 (41)it-/.  rdr+

where [r indicates that the given term is evaluated at the boundary F. This term

goes is zero for both the circular and annular duct cases.
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After discardingthe boundary term in equation (41)and rearranging the rest,

the weak formulation is written as

fn de, d_ rn' /n( d--7 d_ + 7 ¢'_)rdr - _ ¢,_rdr = 0 (42)

The following weak problem is posed: find a trial function ¢, : fl _ R

equation (42) holds V smooth ¢ : fl _ R. ¢,(r) and ¢(r) are suitable classes of

functions whose derivatives are square integrable (from H l space).

A Galerkin finite element approximation has been used with three-node La-

grangian quadratic elements. Basis functions Nl, N2,..., N, are chosen from an

n-dimensional subspace of H 1. Hence, the test and trial functions can be finitely

approximated as

 bCr)=-c,Ni(r) C43)

¢,(r) (44)

where c_'s and di's are suitable scalars s.

Substitution of equations (43) and (44) in (41) yields a finite element matrix

formulation of the problem

( \ dr dr +--_-N_N_ rdrdj-g_ N_Njrdrdl-0 (45)

K o and M,j are the i, j entries of the stiffness [K] and mass IM] matrices respec-

tively.

Non-trivial solutions of equation (45) for the vector d are found if A is an

eigenvalue of the equation

([g]- A[MI)d = 0

sSince ¢, b being suitsbly interpolsted between the nodes, the d_'s here represent nodal values

of the acoustic potential.
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or

([M]-'[K]- [l])d = 0 (46)

2 is the transverse eigenvalue for the rn th radial mode, [I] is the identityHere A = x,,_

matrix and d is the vector of nodal values of the acoustic potential.

The calculationsof the global stiffnessand the mass matrix are carried out

at the elemental leveland assembly is accomplished using proper connectivity of

the nodes since,
iq,,

It] =
flit C

[MI =

where n, isthe number of elements in the domain. The element stiffnessmatrix

[K]' and element mass matrix [M]' are given by

K5 = ( dr dr +• r z

M_i= fo N._N]rdr

where fn. is the integral over the element and N_ is the shape function of the :_h

node of an element.

The matrix eigenvalue problem (equation (46)) is then solved using a QR

solver. Since the problem is of first order, all of the transverse eigenvalues A are

real. It is interesting to note that the eigenproblem could have been posed with

the eigenvalue defined as (k./_l). The resultant system would have been of second

order and twice as large as the present one.

The exact analytical solutions to the differential equation (35) are transcen-

dental functions called Besscl /unctions of the first kind J,,,(x_r) and Bessel [unc-

tions of the second kind Y_(_,._r) of order m,

¢,(r) = AJ,,(_,_r) + BY._(_,,,) (47)
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Bessel functions are oscillating functions whose amplitudes diminish as _:,_r

increases, and the Y,,,(_,_r) become unbounded in the limit as _,_r _ 0. Therefore

for the circular duct B = 0 and for the annular one both the constants A and B

are evaluated by boundary conditions. Application of the boundary conditions on

equation (47) evaluates the transverse eigenvalues _,_ from

:kC  r ) =0 (48)

for a circular duct, and

j'C r) + (49)

for an annular duct for the m th radial mode.

C. FORMATION OF MODAL MATRIX

In classical duct acoustics, it is shown that duct modes can be categorized as

propagating (cut on) or non-propagating (cut-off). Roughly speaking, lower order

modes propagate and higher order modes are cut-off. Cut-off modes are those

which carry no acoustic power and are therefore entirely reactive with energy

trapped near the source.

Rearrangement of the terms in equation (36) yields the axial wavenumber k_

explicitly in terms of the frequency rji and the transverse eigenvalue _,,_

-M _: J1 - (1 - M2)(_) 2 ]k_ = r_l 1 - M 2
(50)

From equation (50), it is apparent that corresponding to each value of the trans-

verse eigenvalue _c,_, there are two distinct values of the axial wavenumber k_, one

representing a positive 6 (or incident) mode and the other representing a negative

A positive mode is a one which propagates or decays in the positive z-direction.
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(or reflected) mode. The value of the discriminant in equation (50) determines

whether the mode is propagating or cut-off. When the discriminant is greater than

zero, the mode is cut-on. Since the axial variation of the acoustic potential has

been assumed to be of the form e -_k'z, a positive sign in front of the discriminant

indicates a positive propagating mode, whereas a negative sign indicates a mode

propagating in the opposite direction. When the discriminant is less than zero,

it becomes imaginary and the mode is cut-off. The axial wave number for such a

mode becomes

k_=7, ,M+i_/(1-M )(,,) -1 (51)

From equation (34) it can be argued that the amplitude of a wave which is cut-off

varies along the z-axis as e+_z where/3 is

(1-M)(,,) -1

B = _i 1 - M =
(s2)

Since the amplitude should decay with distance from the source, a negative sign in

front of the discriminant in equation (51) indicates a positive cut-off mode whereas

a positive sign indicates a negative cut-off mode.

The positive and negative duct modes, corresponding to a single transverse

eigenvalue _,,, have the same mode shape (i.e. eigenvector). Since the higher

order modes are increasingly cut-off, and do not contrib'.:te much to the acoustic

propagation, the first few positive and negative modes have been retained in the

modal matrix. The modal matrix is an NDOF x (NPOS + NNEG) matrix where

NPOS is the number of positive modes retained, NNEG is the number of negative

modes retained and NDOF is the number of degrees of freedom in the system.

Each column in the modal matrix corresponds to a mode. All the retained positive

modes have been placed first ordered according to the increasing magnitude of the

eigenvalue followed by the columns which represent negative modes in increasing

order. Figures 18 and 19 show the first five acoustic duct modes of an annular
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duct corresponding to angular mode numbers 10 and 20, respectively. Each mode

shape is a finite element approximation of a combination of Bessel functions of

the first and second kind as given by equation (47). Note that for a duct with no

acoustic lining, the positive and negative propagating mode shapes are the same.

The transverse eigenvalues and the modal matrix resulting from the calculations

are used to impose the boundary condition on the fan face in the acoustic radiation

problem. Details of the imposition of the boundary condition are described in a

later section.

The above eigenproblem calculations have been done in the mesh generation

code because the finite element mesh for the problem is generated along with the

mesh for the whole domain. An input and output data description for it has been

elaborated in the appendix.
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V. TIME INVARIANT MEAN FLOW PROBLEM

A. DERWATION OF THE FLOW PROBLEMS

Equation (14) describes the steady mean flow around the inlet of the turbofan

engine. In the general case the fluid is compressible and equation (14) is nonlinear.

However, under the assumption of sufficiently low flow Mach number, the flow can

be approximated as an incompressible one, and equation (14) can be approximated

by

V'¢o =0 (53)

which is the Laplace equation. The assumption of incompressibility does not

impose any extra restrictions on the acoustic perturbation flow equation (15) of

Section II.D.

In Figure 1, the curves F in the z-r plane correspond to surfaces in the ax-

isymmetric space around the inlet. The axis of symmetry F, is not a physical

boundary of the domain. In the axisymmetric integral formulation of the prob-

lem, the boundary integral corresponding to this axis (r = 0) vanishes. Therefore,

no boundary condition needs to be specified. The far field boundary F= is cir-

cular (spherical in axisymmetric space). Though it is several duct radii from the

inlet, the flow effects due to the presence of the inlet cannot be assumed negligi-

ble. The boundary condition on this curve will be discussed later. The nacelle

F, and centerbody F= are impervious to flow. The curve I'! represents the fan

face. The curve Fb representing the baffle is a pseudoboundary that does not exist

physically and corresponds to a porous baffle that admits flow through but affects

the acoustic field to as small an extent as possible.

Since the differential equation (53) is linear, it can be split up into three

different problems, each of which can be solved separately and upon employing
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the method of superposition, the velocitypotential of the actual flow fieldcan be

determined. The velocitypotentialfor the mean flow isdecomposed as follows:

_o= _.+ _p (54)

where @u is the flow field due to the external uniform flow field only (without the

presence of the inlet) and _v is the flow perturbation due to the presence of the

inlet only. The boundary condition to be applied at the boundaries rb and too is

not clear until and unless we formulate the problem in terms of flow perturbation.

Our aim is to formulate the entire problem in such a way that the fan face and

the external flow velocity do not become dependent on the perturbations; rather

they govern it.

The perturbation velocitypotential_p isfurther decomposed into

(s5)

where _t is the perturbation potential due to inletflow alone (fan flow effects

only) and _b2is the perturbation potential due to flow to a blank inlet(effectof

the presence of the jet engine inletin the external uniform flow). Therefore, the

three flow problems may be posed as

This problem represents the perturbation potential fielddueI. Problem I

to inletflow alone.

V2_i= 0 inn (sea)

V_t * n - U! on r/ (56b)

V_1*n=0 onrnandre (56c)

A, (s6d)
V_bt•n- R2ron ont,.,

V_len=0 on rb (56e)
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where U/is the uniform fan face velocity, A1 is a constant to be determined, n is

the unit outward normal on the boundary and r is the outward radial vector on the

outer boundary I'_ as shown in Fig.1. It is assumed that on the outer boundary

r_o the effect of the flow field is that of a simple source placed at the origin. Hence,

the velocity perturbation at the outer boundary is assumed to be radially directed

inwards and inversely proportional to the square of the radial distance from the

origin T. Therefore the boundary condition (56e) at the baffle boundary rb, which

is a radial ray, is zero and hence it is impervious to flow perturbations.

This problem represents the perturbation potential field due

to a flow to a blank inlet.

V=¢2 = 0 in 12 (57a)

V¢2 * n = -V_b... n on F/ (57b)

V¢2 * n = -V¢_,. n on F,, and F, (57c)

As
VC2*n=_-_rsn onF_ (57d)

° n = 0 on (57e)

where ¢,, is the external uniform flow velocity potential, As is a constant to be

determined and r and ]a are as mentioned before. Here also the flow at the outer

boundary is assumed to be that of a simple source placed at the origin. The flow

perturbation is assumed to be radially outwards and varying as 1/R 2 , where R

is the radial distance from the origin. As a result, the baffle boundary (equation

(57e)) again becomes impervious to flow perturbations.

3. Problem III The uniform external flow field is generated by

V=¢u = 0 in n (s8a)

7The velocity field of a simple source varies _ 1/R 2.
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XT_.,n= Uoi,n onF_ and r_ (58b)

where Uo is the external uniform flow velocity.

Problems I and II are boundary value problems with Neumann boundary

conditions. Solutions to these problems are non-unique if the value of the unknown

variable is not specified at one point in the domain fl. The problems also have

to satisfy a compatibility criterion which balances the flux of flow across different

boundaries. This criterion fixes the values of the constants A1 and A2 relative to

the flow parameters and, therefore, they are not arbitrary.

A linear superposition of the problems I, II and III gives us the overall bound-

ary value problem of the mean flow

_7_bo = 0 in fl (59a)

V¢o • n = t9 on rs (Sgb)

_@o,n=O onF, andF_ (59c)

A! A_ (59d)
VOo.n=--_r.n+-_r.n+Uoi*n onF_

V6°*n=Uoi*n onF_ (59e)

The flow perturbation effects of the inlet at the outer boundary are small due

to the distance of the boundary from the inlet. Also it is to be noted that the

perturbation boundary condition at the outer boundary F... for problems I and II

(equations (56d) and (57d)) tend to balance each other. Therefore, under these

conditions the superposed boundary condition (59d) on Foo can be written ap-

proximately as V_b° * n _ Uo i • n. The superposition of the elementary solutions

from problems I, II and HI is based on the assumption that the outer boundary

condition is imposed at a large distance from the inlet. This effectively makes U!

and Uo independent of each other. For a given value of Uo, any value of U! can be
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chosenoncethe elementarysolutions are available. Variations in Uo requires new

potential flow solutions to be computed because the mesh depends on Uo.

B. FINITE ELEMENT FORMULATION

1. Problem I Since the mean flow field is axisymmetric, there is no variation

of flow variables in the angular direction. Therefore, the test and trial functions are

independent of the angular coordinate 0. Let ¢ be a real valued smooth function

defined in the axisymmetric domain fl. Multiplication of the Laplace equation

with the test function ¢ and integration over the domain yields

f V2¢,¢ dn = o (60)

By using Green's theorem, it is determined that

where S denotes surfaces of the axisymmetric volume ft. Since the problem is

independent of 0, the volume integral becomes a surface integral in the z-r plane,

and the surface integral becomes a line integral, so that

0¢, 0¢) (62)

Incorporation of the natural boundary conditions into equation (62) results in the

weak form of the problem

[(a¢, a@ _ a@) : 1f,j, .._x_-_x+ --_r rdxdr Uzfr ¢,dr-A,_ C_r°nrdr
(63)

Therefore the following weak problem may be posed: find ¢1 : _ _ R2 _ equa-

tion (63) holds V smooth ¢ : n _ JR.2. It is to be noted that ¢ and _ are suitable

classes of functions whose derivatives are square integrable (from the space HI).

A standard Galerkin finite element approximation has been used for the ma-

trix formulation. Basis functions NI,N2,...,/7- have been chosen from a finite
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dimensional (of dimension n) subspace of H _. Hence, the test and trial functions

can be finitely approximated as

¢=c,N_(x,r) (64)

¢, =d_N,(=,,) (65)

where c_'s and dj's are suitable scalars 8. Substitution of equations (64) and (65)

in (63) results in the matrix formulation of the problem

f(aN, aNj aN,aNj. ]J. _x _x + "_r"_"r } rdxdr di - U! It;

• ,,_

N,,dr-A,f_ g,_r. n,dr
Gio

(66)

where Kij is the i, j entry of the stiffness matrix [K] and F, is the s_h entry in the

load vector {F}.

2.__..P_£gb.lgIIl._ In a procedure similar to that of problem I, the weak form of

problem II is

/,£(°,,°¢Ox Ox
a____z_a! ]r_ + Or Or )rdxdr-'- °

CV¢o*nrdF+A2fr ¢_'i r • n rdr (67)

where F e = F,, u F! u F, and, _ and ¢ are from H _.

As in problem I, a standard Galerkin finite element approximation has been

used for the matrix formulation. The matrix formulation of problem II yields

/., oN,oN, o_,oN_. !j( _ _ +-y;--_;-jrd=dr d_=

12

- fr NiV¢, • n rdr + A, N,_-/r • n rdF
0 @O •

•

(68)

sSince ¢ is being suitably interpolated between the nodes, da's here imply nodal values of the

mean flow potential.
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where K:, is the i, j entry of the stiffness matrix [K'] and F_ is the i'h entry in

the load vector {F'}.

Details of the stiffness matrix and load vector calculations are dealt with in the

next sub-section. The constants A1 and A2 of the problems are found by imposing

the compatibility condition which balances the flux across the boundaries. For

problem I, it balances the flux across the fan face with the flux across the outer

boundary r=, i.e.,

or,

Us rdr = A, --_r • n rdF

UI fr, rdr (69)
A'=$r" ,s-_r * n rdr

For problem II, it balances the flux across the nacelle, centerbody and fan

face with the flux across r._, i.e.,

/r /1V¢o * n rdr = A, -_-{r * n rdr

or,

Jr, We. • n rdr (70)
_-_r , n rdr

C. FINITE ELEMENT CALCULATIONS

The global stiffness matrices and the global load vectors as defined in equa-

tions (66) and (68), can be written as the composition of the element stiffness

matrices and element load vectors respectively. Therefore, for example, in prob-

lem I, we can write
nc

[KI = _-_[K=I

ne

{F}= __,{F')
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where n, is the number of elements in the domain. The element stiffness matrix

[Ke_. and the element load vector {F '} for the problem are given by

[ _alv: aN; + aNt 0___;)•dxdr.....

Jn,' az ax Or Or

/. 1F; = Us N; rdr - A, N;_-_r • n rdr

where fn. is the surface integral over the domain of the element, fr} and Jr- are

line integrals along element boundaries on the fan face and the outer boundary

respectively, and N_ is the shape function of the i th node of the element.

Finite element calculations are done based on a parent element with local

coordinates _"and 17 as shown in Figure 4. The element shape functions N_' corre-

sponding to each node i in the parent element are standard functions and therefore

known.

1. Surface Integrals To perform the finite element calculations on a parent

element, an element map is constructed. The transformation under which each

element fie in the mesh is the image of a fixed parent element under a coordinate

map Te is constructed as
nodes

Te:x = E :'g:(_'_) (72.)
i=!

_deJ

re:• = ]C •,g;(_,_) (72b)
i=l

where nodes is the number of nodes on the parent element, and is 8 or 9 depending

on whether it is an eight or nine-node element. The element fle to which 7", maps

the parent element is completely determined by specifying the x, • coordinates

(z,, rs) of all the nodal points of fl,. Element shape functions N_'(z, r) are simply
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obtained from standard parent element shape functions -_(C, 7?) by

(73)

The derivatives of shape functions are obtained by the chain rule of differentiation,

aN, a_, a_ a._,av= + (74_)
ax a_ az an Oz

aN_ a_ ac a& an
0--7- OC Or + On Or (74b)

According to the element map,

OX n,*du O/_r_

--= _C:_ (7sa)
c9_ _=i at

(_X nodem--= _C=, (7sb)
at/ k=l

--=a"-o""C,.,,_a"e': (7s=)

_I" node, _/_e

_= Z., r_"_--.
k----I I!

(75d)

By using the above relations (equations (72) through (75)), the element stiff-

ness expression K_i may be expressed as

n, f(x,r)rdrdx = /n, #(g,r/)F(g, rl)J(g,v)dcdrl
(76)

where fn, is the domain integral over the parent element and J(f, r/) is the Jacobian

of the transformation T, given by

ax cgr ax Or
(77)

J(_,7)= afa_ a_ac

A standard 4 x 4 Gaussian quadrature rule has been used to evaluate the integral.

It is important to note that the mean flow calculations have been done both with

and without the wave envelope elements. In one case, no distinction has been
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made between the elements in regions I and II and the elements in region III. All

the regions have isoparametric rectangular finite elements. In another case, shape

functions for the wave envelope elements in region III, differ from the rest in the

mesh due to the fact that they simulate the inverse square decay behaviour as

expected in a field due to a simple source. Mathematically a shape function may

be expressed as

(7s)

The results in
where N_ is the stmadaxd shape function of node i at radius r;.

both cases were virtually identical for the flow velocity we are concerned with.

For compatibility with the radiation calculations the wave envelope elements were

retained.

2. Boundary Integrals Three-node quadratic line elements lie along the

boundaries and the generation of their topology and their nodal connectivity have

already been discussed in the mesh generation scheme. The calculations of the

line integrals are carried out by integrating along those sides of the parent element

that are mapped onto the sides r' of the actual element fl, along which natural

boundary conditions are prescribed. For definiteness, it has been assumed that the

side f = 1 has been mapped onto r'. The line integrals have been parametrized

with respect to r}.

The shape functions used for the line integrals are identical to the standard

shape functions for the three-node Lagrangian line element. Element maps are

created as discussed before and the elemental arc length is found by

dr = _/dx 2 + dr 2
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or,

+ (79)
d£ = V a,7 0,7

J

where j is the jacobian of the transfomation of r/ onto the arc length parameter

in the z-r plane. The dot products, V(bo • n for problem I and r • n for problems

I and II need to be computed at each node on the relevant boundaries to evaluate

the line integrals. Note that the constants A1 and A2 need to be evaluated before

constructing the load vector.

D. THE SOLUTION PROCEDURE

All of the boundary conditions are of the Neumann type and the differen-

tial equation is the Laplace equation. Hence, there is no unique solution to the

problems unless a reference value of the mean flow velocity is specified at any

point in the domain. This does not affect the results because we are interested in

the derivatives of the potential and not in the absolute values of the mean flow

potential. By penalization, the potential has been made zero at the intersection

of the boundaries rb and r**. This penalization has been made at the elemental

level. When the stiffness matrix of the element which occupies that node at the

intersection of rb and r..., is calculated, a very large value (1.0e15) is added to

the diagonal entry in the matrix corresponding to that boundary node. Hence

the velocity potential at that node is forced to zero after solution. The penalized

stiffess matrix for that boundary element looks like the following :

Ku ... Kl,, ... K1,

. . • . ..

K_t ... K_+_ ...

. . : • .

K,I ... K,,,, ... K,,.

where m is the penalized node number (local) and c (1.0e-15) is the penalty param-
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eter. As a check, penalization was carried out at a different point in the domain,

and the solution was found to differ from the previous solution by an arbitrary

constant only.

Since the penalization is carried out at the element level, the stiffess matrix

and the load vector are never stored in assembled form. As each element stiffness

matrix and load vector is formed, it is written down onto disk along with its nodal

connectivity. The frontal solution method of Irons [22] has been used to solve the

algebraic system of equations [K]{¢} = {F}. The principles of this technique are

implied by the Gaussian process of forward elmination and back substitution. The

frontal process alternates between accumulation of element coefficients (assembly)

and elimination. Whenever an element is assembled its nodes are kept in active

storage until their elimination. The active in-core storage at a point of time

depends only on the "frontwidth" (number of active nodes at that time) which is

much smaller than the dimension of the assembled matrix. This drastic reduction

in in-core storage is the most important aspect of this scheme. Details of the

scheme are, however, not discussed here.

E. SUPERPOSITION OF THE SOLUTION FROM THE THREE PROBLEMS

After the solutions to problems I and II are obtained, they are added to the

exterior field velocity potential to obtain the overall mean flow velocity potential of

the flow field. Solution to the problem III is the uniform flow field whose velocity

potential is given by

¢,, = Voz + c (80)

where C is any arbitrary constant. Problems I and II have been solved by penaliz-

ing the velocity potential at the intersection of Cb and C,, to be zero. Therefore,

in order to be theoretically rigorous, the uniform flow field velocity potential ¢,,
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should be penalized to zero at that point before superposing the three solutions.

In this process, the solution vector from the three problems have the same datum

of reference. Hence, the value of the constant C no longer remains arbritary and

is calculated as

C = -V,,x v (81)

where zp is the x-coordinate of the penalized node at the intersection of C, and

Coo.

The overall mean flow velocity potential is found out by pointwise addition of

the solution vectors from the three flow problems

¢o = ¢, +¢u (82)

The solutions to the problems I, II and III have been obtained by an input of unit

velocity at the fan face and in the exterior flow field i.e. U! = 1 and Uo = 1.

Therefore, if the fan face flow Math number and exterior flow field Mach number

are M l and M., respectively, the superposed solution is found by

¢o = MI¢I + M,(¢2 + ¢_) (82)

F. RESULTS AND DISCUSSIONS

The solution to the mean flow problems I and II are the velocity potential

values at the nodes in the finite element mesh. Contours of constant velocity

potential in the field have been plotted in Figures 20 and 21. Figure 20 corresponds

to inlet flow alone (problem I) with a unit velocity on the fan face and Figure

21 corresponds to flow into a blank inlet (problem II) with a unit far field flow

velocity. The contour curves for both the problems are more or less parallel to the

fan face C! inside the nacelle and they form concentric circles outside the inlet.
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The equipotential linesarealwaysorthogonal to the streamlines in a flow field, and

since the velocity on Coo is radially directed for problems I and II, the constant

potential curves in the far field are supposed to meet Coo tangentially. From

Figures 20 and 21 it is obvious that this condition is satisfied upto a certain angular

distance from the x-axis but at high angles, the contour curves do not quite meet

Coo tangentially. This is probably because the finite element mesh for the acoustic

radiation problem is also used for solving the mean flow problem. The mesh in

region III, corresponding to the wave envelope elements for the acoustic radiation

problem, is quite coarse for the mean flow problem. This may lead to slight

numerical inaccuracies in the finite element solution in the far field. However, it is

not of much concern for the present problem because the perturbation potential in

the far field is small. Therefore, when the two flow fields are superposed with the

external uniform mean flow, the effect of the flow perturbation in the superposed

far field is not noticeable. This is apparent from Figure 22 which shows the

equipotential lines in the superposed field with a fan face Mach number of 0.5 and

a uniform far field Mach number of 0.3. It is also to be noted from Figure 22

that on the far field boundary, the flow is almost fully dominated by the external

uniform mean flow. Therefore the comment made at the end of Section V.A, that

the perturbation boundary condition on Coo for problems I and II (equations (56d)

and (57d)) balance each other, is very well satisfied.
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VI. ACOUSTIC RADIATION PROBLEM

A. WEAK FORM AND FINITE ELEMENT FORMULATION

The governing equation for the acoustics problem with flow is given by equa-

tion (15) in Section II.D

Op + V • (poV¢+ pV¢o) 0
Ot

where p is given by equation (12) of Section II.D,

po[a¢p = -_ _ + (V_o• v_)]

co being the nondimensional speed of sound in mean flow.

Solutions to the above two equations are desired in the case of a harmonic

source on the fan face C/ with time and angular dependence given by e_("'t-'_e),

where _, is the nondimensional input frequency (r/,= wR/c,, w is the input

frequency) and m isthe angular mode number. Since a steady state solution is

sought, temporal derivativesof acoustic variablesare replaced by a/Ot = bT,. To

formulate a weak problem, letus assume that the trialand testfunctions are of

the form

¢(=,r,e,t) = ¢(=,Oe'('.'-") (s3)

d;(x,r,S,t) = _b(x,r)e -'("''-'_,) (84)

The fact that the test function is taken to be the complex conjugate of the trial

function is consistent with the definition of the inner product of a complex Hilbert

space.

Multiplication of the governing equation (15) with the test function ¢ and

integration over the domain yields

Iv Op (851[_ + _v • (pore + pV¢o)ldV= o
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Integration of the divergence term in equation (85) by parts yields

Iv "Op Is (86)t_-_-[ - V_ • (pore + pV¢o)] dV = - Ib(poV¢ + pV¢o) • n dS

where J'v and fs are the volume integral and the surface integral respectively in

the three dimensional space in and around the inlet. Since the trial and test

functions have been conveniently chosen, the following weak problem is posed in

the (x, r) domain fl : find _b(x,r) : fl ----* C 2 _ equation (86) holds V smooth

¢(=,r) :fl -----* C 2 where

ap _ v¢ • (pore + pV_o)
FFl 2

= i_,p¢ - p07¢¢ - pug,,

- pv¢,, -poe,, ¢,, -poe,, ¢,, (87)

Here u (= ago�a=) and v (= a¢o/ar) are the x and r components of the mean

flow velocities in the domain fl. (),z and 0,, are the derivatives of variables with

respect to z and r in the field.

Substitution of p in the right hand side of equation (87) by equation (12) of

Section II.D yields

op _ v¢ • (pore + pv¢,) =

2 2

P--_[(7; Co_ )¢¢ + i_,CoU(¢,, ¢ - ¢¢,z ) + i_,CoV(¢,,¢ - ¢¢,, )c_

- (C_o- ,,')¢,, _,,,-(C'o- ,,')¢,,¢,, + ,,,,(¢,,¢,, +¢,, ¢,, )l (88)

It is to be noted that the right hand side of equation (88) has products of the

functions ¢ and ¢ or their derivatives with respect to x and r. Since the functions

are complex conjugates of one another, the exponential terms of ¢ and _b as in

equations (83) and (84) cancel out here. Therefore the right hand side of equation

(88) is an expression in coordinates x and r only. The volume integral in the left

hand side of equation (86) reduces to a surface integral over the domain t2 in the
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following way

£ = £

2_£ f(_,,),e,ex (89)

Similarly we can take out a factor 21r from the right hand side of equation (86)

and reduce the surface integral to a line integral.

£ = fs rdOd,

27r fr p(x, r) rds (90)

where ds isthe elemental arc length. The constant factorof 2_ thereforecancels

out from both sides in equation (86).

The trialand the test functions _ and _ respectivelyare from complex H l

space. In an analogous procedure to that carriedout in Section V.B for the

mean flow problem, the trialand test functions are finitelyapproximated using

the standard Galerkin method. The resultingfinitedimensional subspace of H I

is then constructed. The resulting matrix formulation of the problem yields the

global stiffness matrix expression of the problem

Kq = f, f_ h(z,r)rdrdz (90)

where

h(_,r) = :iP°1('_; c':"')N'N_r'+ m,Co,,(N,,,N, - N,N,,, )
Co

+ i,,c.v(N,,, Nj - N, Ni,. ) - (c_o- u')N,,,. Ni,.

- (C'o- :)N,,, N,,, + _(N,,, N,,, +;v,,, N,,, )1 C91)

NI,N2,... ,IV, are basis functions of the finite n-dimensional subspace of H I.

Conventional eight-node quadratic isoparametric elements have been used to

model the regions I and II and hence the interpolation functions used here were the
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sameas those for the mean flow problem. The outer region III has beenmodeled

with eight-node wave envelopeelements. As discussedin Section II.E, the wave

envelopeshapefunctions are constructed on the assumption that at a sufficiently

large distancefrom the inlet, the acousticfield approximatesthat of a point source

placedat the origin and are of the form

where 1/R is the nature of decay in the acoustic field due to a point source and

_bis the equation of constant phasesurfaces (refer to Section II.E). The wave en-

velope elements are not truly isoparametric in the sense that the element maps

are created using the standard eight-node quadratic shape functions, but the solu-

tion is interpolated inside the element using the modified _wave envelope" shape

functions.

B, ACOUSTIC BOUNDARY CONDITIONS

Equation (86) yields a surface integral of form

s ¢(poV¢ + pV¢o) • n dS

which can be transformed to a line integral over the boundaries in the (z, r) domain

as has been discussed before. The significance of the combination of terms in

the integrand is clear because it represents the natural boundary terms which

are generated by the use of the divergence theorem. The following discussion

investigates what form the integrand [¢(poV¢ + pV¢o) • n] assumes on different

boundaries of the computational domain fl.

1. Far Field Boundary CM On the outer boundary C,_ in the far field a

Sommerfeld radiation condition has been applied. Since there is no reflection in

the far field this condition assumes that on C_ only an outgoing wave exists. In
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fact, the modeling of region III with wave envelope elements is complete only when

this radiation boundary condition at the outer boundary is properly implemented.

At Coo the acoustic field is assumed to be that of a simple source in uniform

flow and placed at the origin. The potential for a harmonic acoustic monopole

(simple source) in a uniform x-direction flow of Mach number M can be written

as

s = Ae('°"-_l (92)
R

where

A = v/1 - M2 f° (93)
4_rpo

R = \/x' + (1 - M')r' (94)

1
g, = (-Mx + R) (95)

(x-M')
k - (96)_r_T

Co

fo is the source strength, 17, is the source frequency, po is the mean flow density

and k is the local wave number. By taking appropriate derivatives of the acoustic

potential S we get

OS -ik (-M + - S (97)
a-"_ = (1 - M 2) R)

- [ 'rlr _(I_M)_--_ S (98)as = -ik_Or

By expanding the right hand side terms of equation (12), we obtain the following

expression for acoustic density in the field

[ Mosl (99)
--P° [ikS+ -_ jP = Co

Substituting p in (OoVS + p_d)o) using equation (99), we obtain

0S_[aS (1 - M') - ikMcb ff + Po_rr(OoVS+ pVS°)= p° LT=
(xoo)
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where K and _" are the unit vectors along the x and r axes respectively. Using

equations (97) and (98), equation (100) can be rearranged to yield

[ z__ (1-M 2) (¢)(z_÷r_ (101)(P°V¢+PV¢°)=P° - -- R

Therefore, the natural boundary condition at Coo representing the Sommerfeld

radiation condition for a harmonic acoustic monopole in a uniform flow parallel

to the x-axis is

P° [-ik (l _M') ] (¢)(n_z + n,r) (102)(pore + pV¢,) • n =

where n, and n, are the x and r components of the outward unit normal n on the

outer boundary.

In the far field, the mesh is constructed on the basis of constant phase circles

in uniform flow and acoustic rays from the origin. Hence the outer boundary Coo

as shown in Figure 23 is a constant phase circle. By taking ¢ as constant in

equation (g5) we obtain the equation for such a circle to be

(x - M_b)' + r' = ¢2 (103)

So, a constant phase circle is of radius _b and having origin at x = M¢ and • = 0.

From Figure 23 it is obvious that

thus

n, = cos_ = x - M¢ (104)
¢

n, = _infl = L (lOS)
¢

x _ - MCz + r _
(lO6)

(n.x + n,•) = ¢

With some algebraic manipulation on the right hand side of equation (106) it can

be shown that

n,.x + n,r = R (107)
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Therefore the boundary integral on Co_ can be expressed as

_ R

As R becomes large (as it is for the outer boundary Co_), the second term in the

integral becomes negligible with respect to the first and the boundary integral may

be approximated by

In the right hand side of the equation (109), the local wave number k(= r_/co) can

be replaced by 17, because at C,,,, co = 1. It is important to note that this form

of the integral assumes a "Oc" termination i.e. the wave at C_ behaves locally as

a plane wave. Therefore, it will be incorrect to compute the boundary integral

given by equation (109) until and unless the outer boundary Coo is quite far away

from the inlet.

In the finite element matrix formulation of the weak problem (86), the bound-

ary integral (109) yields an n x n matrix A given by

= fr ipokN,Nirds (110)

where n is the number of degrees of freedom (= number of nodes) on the outer

boundary C_. The outer boundary matrix A is therefore transposed to the left

hand side of the equation (86) and appropriately added to the stiffness matrix

given by equation (90) using the nodal connectivity of the outer boundary line

elements.

2. Baffle Boundary Cb In an attempt to reduce the size of the computational

domain a baffle surface Cb has been modeled at an angle a to the z-axis (see

Figure 24) which would allow flow through it but affect the radiated acoustic

field minimally. The baffle C, is swept back far enough from the main direction
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of sound propagation with the hope that it does not inter[ere with the forward

radiated acoustic field. In the region III of wave envlope elements, the natural

boundary condition given by equation (102) is also valid on C_ since it is valid for

arbitrary surface shapes. We now investigate the value of the term (n:z + n,r) on

Cb.

Referring to Figure 24, we observe that the line representing the baffle Cb is

a straight line passing through the origin and at an angle a to z-axis. Therefore

its equation is

y(z,r) -- r - "yx --O (111)

where _ = tana "_ the slope of the line. The outward unit normal n to Cb can be

written as

Thus

Vy 1

n - Iv--  l- +VI +"t"
(112)

1

(n,z + n,r) -- _/_(--yz + r) = 0 (113)

So the boundary integral vanishes on 06 in the wave envelope region. Since the

region II is much smaller than region Ill, the same approximation has been made

there while computing the boundary Lntegral on Cb with the expectation that any

errors induced will be localised and will not contribute significantly to the forward

radiated acoustic field.

3. The Centerline Since the centerline corresponds to r -- 0, the boundary

integral on the centerline provides no contribution for the axisymmetric formula-

tion, just as in the mean flow problem.

4. The Nacelle Surface C, and Centerbody The nacelle surface C, and the

centerbody are impervious to both steady mean flow and acoustic perturbations.
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Therefore

V¢oen=0

V¢°n=0

Hence there is no contribution to the boundary integral in equation (86) from the

nacelle surface and the centerbody.

5. The Fan Face The sound source at the fan face C! has been modeled

in terms of the duct mode amplitudes. The boundary C! has been taken to be

at a locally uniform part of the inlet. The acoustic potential field due to it has

been expressed as a combination of incident and reflected (positive and negative)

uniform duct eigenfunctions. The eigenvalues and the eigenvectors from the finite

element duct eigenvalue problem discussed in Section IV have been used to model

the natural boundary condition on the fan face C I. The acoustic potential can be

conveniently written as

N N

¢ = _ ¢+e-_.+.,e_(r) + _ ¢:e-_;'.'e,(r) (114)
n=i r=l

where ¢+ and ¢- are incident and reflected duct medal amplitudes, k±z,, is the axial

wavenumber corresponding to positive or negative modes given by equation (SO),

N is the number of modes retained in the expansion and e.(r) is the continuous

duct eigenfunction corresponding to each retained duct mode. Note that the

eigenfunctions e,,(r) are the same for propagation in the positive and negative

direction.

On the fan face boundary the integrand of the boundary integral can be

expressed by using equation (12) as
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where MI (= V¢o/Co) is the axially directed local fan face Mach number. Sub-

stitution of equation (114) in (115) yields

I/ ;/ "i(pore -_pv¢o) sn = ipo 1-M k* +r), ¢.e- (r)
, z. Co j

n=l

n=|

where Co is the nondimensional local speed of sound in flow at the fan face•

On the fan face (z = 0, z being measured from the fan face) the acoustic

velocity potential can be conveniently expressed in terms of duct mode amplitudes

by substituting z = 0 in equation (114)

Similarly equation (115) can be rewritten as

(poV¢+pV¢o).n= i { _re,(,) ... _7_eN(')_,;e,(,)

¢;

¢;I

(117)

,_;,_N(")

,¢,;-

} ¢7

(118)

where

a,, - po 1- M k + + _.
Zem

So the boundary integral on the fan face C! can be cast as

(119)

(120)

where

{B} = {e,(r)...eNCr) e,(r)...eN(r)} (121)
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a. Forced Input to the Acoustics Problem The input to the acoustic radi-

ation problem has been given in terms of specified values of the incident modal

amplitudes ¢+, the reflected modal amplitudes ¢- are obtained as a part of the

solution. To be precise, the acoustic pressure amplitudes p,+ are the inputs and

by using equation (16) in Section II.D, they are related to the velocity potential

modal amplitudes by

_: (122)p,, = -ipo,7, 1- u_ z. ¢_

In order to use a forced input on the fan face CI, generalized coordinates have

been used on the fan face rather than the nodal values of the velocity potential.

The generalized coordinates used for this problem are the velocity potential modal

amplitudes ¢±. Equation (117) suggests a convenient transformation from the

nodal values of the velocity potential on C.¢ to the generalized coordinates by

{¢}cl=[M]{ ¢+}¢E
(123)

where {¢}c / is a NF x 1 column vector, NF being the number of nodes on the fan

face, and [M] is the NF x 2N transformation matrix (N is the number of incident

modes and the number of incident and reflected modes are the same). Since [M l

is the matrix of acoustic eigenvectors on C,,, the modal matrix resulting from the

finite element duct eigenvalue problem serves the purpose.

This transformation is applied element by element on the fan face Cf. In each

element on the fan face the boundary nodes (nodes which belong to a fan face

element and lie on the fan face boundary CI) are transformed to the generalized

coordinates but the interior nodes (nodes which belong to a fan face element but

do not lie on the fan face boundary) remain intact. This tranformation is done by
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creating an element transformation matrix [h-!] _ given by the following relation

/°:¢: (124)

where {¢}_ is the NODE x 1 column vector consisting of nodal values of velocity

potential, NODE being the number of nodes in a fan face element. The column

vector on the right hand side is partitioned so that the first 2N generalized co-

ordinates are the modal amplitudes and the remaining degrees of freedom ¢_ are

the velocity potential values of nodes which are interior. Note that the element

transformation matrix [A;/]' will be different for different fan face elements.

The effect of this transformation is that in the Galerkin formulation of the

problem the element stiffness matrix [K'], which is basically the integral given by

equation (90) when calculated over an element, corresponding to elements on the

boundary C/ are expressed in the generalized coordinates given by the column

vector in the right hand side of equation (124). The transformed fan face element

stiffness matrices [K_] are of the form,

[K;]= (12s)

Here [K_] is a (NODE - NB + 2N) x (NODE - NB + 2N) square matrix,

where NB is the number of fan face nodes belonging to one fan face element. It

is importrant to note that the first 2N generalized coordinates consisting of the

incident and reflected modal amplitudes ¢± are common to all the elements along

the fan face boundary C! but, the remaining degrees of freedom ¢_ corresponding

to interior nodes of a fan face element are different for different elements.

b. Finite Element Formulation of the Boundary Integral The boundary in-

tegral on the fan face C! assumes a very convenient form in the Galerkin method
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where the test or the weighting function is the same as the shape function. Under

this condition the boundary integral given by equation (120) assumes the form

i I q:{a±B} rds=i {B}T{a±B} rds (126)
,l I"

/ ¢= 1 ¢7`

Now {B} is the row vector consisting of continuous duct eigenfunctions corre=

sponding to each retained duct mode, The information that we have regarding

the duct modes is the finite element modal matrix [M] where each column rep-

resents a duct mode. But such eigenvectors are discrete. We approximate the

continuous duct eigenfunctions by the discrete finite element eigenvectors in the

following way

{B} = {N} [M] (127)

where {N} is the row vector of quadratic basis functions Nl, Nz,..., NNF corre-

sponding to the finite element duct eigenvalue problem. Substitution of equation

(127) in (126) yields

rds = ilM]r

i ¢= 1
(128)

The right hand side of equation (128) is evaluated element by element on the fan

face and each of these element integrals yields a 2N x 2N square matrix [C]" given

by

(12o)

The matrix [Cl'calculated in one fan face element is then appended to its corre-

sponding transformed element stiffness matrix [K:] given by equation (125). Since

the first 2N generalized coordinates are the ¢±, the matrix [C] ' is appended to

the topmost and leftmost 2N x 2N block of [K:]. Thus the non zero boundary

conditions in the problem are introduced through the element stiffness matrices

of the boundary elements.
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C. THE SOLUTION PROCEDURE

The frontal scheme of Irons 122], adapted for unsymmetric problems, has been

used to solve the algebraic system of equations

[K] - =0 (130)
i

The solution procedure is very similar to that implemented for the mean flow

problem. The first N generalized coordinates corresponding to ¢+ are penalized to

force in the required input values for the acoustic radiation problem in a manner

similar to the mean flow case. Such penalization has been carried out at the

elemental level.

D. RESULTS AND DISCUSSIONS

In this section several example numerical results are presented to demonstrate

the improvements in the finite element model of the acoustic radiated field of the

turbofan inlet. The numerical data that can be validated by experiment is that of

the acoustic pressure in the field. The solution of the acoustic radiation problem

yields the acoustic velocity potential at the nodes of the finite element mesh. The

solution is then post processed to yield the acoustic pressure at the nodes by

p = -poli,,¢ + (V¢o • re)] (131)

which is obtained by using equation (16) in Section II.D. From equation (131)

it is obvious that the x and • derivatives of both the mean flow and acoustic

velocity potential need to be evaluated at the finite element nodes before the

nodal acoustic pressure can be calculated. The differential equations governing

the mean flow and acoustic radiation problem are of second order and therefore

the finite element solution space is from H _. This implies that though the solution
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is continuous across interelement boundaries, the derivatives need not necessarily

have the same property. Once the velocity potential at the nodes of an element

are known, '.he z and r derivatives at any point in the element can be obtained by

"" og_ (132a)a¢ a=
_.T d=l

"" ON_ (132b)

where n, is the number of nodes in an element. Following the above approach,

the value of the z or • derivative at a node (which is shared by more than one

element) might be different when evaluated in the different elements sharing that

node, since the derivative need not be continuous across interelement boundaries.

In the original model, a simple average of the nodal derivatives from different

elements sharing a node was performed to obtain an unique value of the derivative

at that particular node. From Figure 25, it is clear that at node j, which is shared

by all the four elements, the derivative with respect to z is obtained for example,

by

¢1,, +¢_,, +¢s,, +¢4,,

¢(D," = 4

where ¢_' is the derivative with respect to z evaluated at node j within element ,'.

Similar calculations are performed to obtain the derivative with respect to r.

Test runs have been made at different combinations of source frequencies and

angular mode numbers for an external uniform flow of Mach number -0.3. Only the

first radial mode, among the incident ones, is present with a unit modal amplitude.

Since the acoustic pressure varies over a large range, sound pressure level contours

have been plotted.

Figures 26 through 31 show the sound pressure level contour plots with the

nodal information obtained by the averaging technique. It is observed that the

contour curves representing the main lobe of radiation in the conventional finite
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f_ _ f

_ nodes shared bymore t.han one

element

Figure 25: A node shared by allthe elements in a 4 x 4 mesh

element region H are extremely jagged in nature and do not represent the true

nature of the acoustic field there. But strangely enough, they smoothen out totally

in the wave envelope region HI. This is true for low frequencies like 12.0, which is

on the lower side, and also for 20.0 which is on the higher side. Also it is noticed

that this erroneous behavior is more spread out in the field at higher frequencies.

Besides this, spurious reflections from the baffle are also present in the radiated

field especially at high frequencies.

To improve on the results,nine noded quadratic isoparametric elements were

used for the analysis instead of the eight noded ones. The presence of the extra

ninth node st the element centerdid not provide betterresults.In fact,the results

when compared with the eight noded ones were almost identical.Therefore, to

reduce the dimensionality°of the problem, the nine noded elements were discarded.

However the analysis isalmost the same wlth both kinds of elements, except the

°The number of desq'ees of freedom mmociated with N eight noded elements in the mesh is less
thzn N nine noded elements by N.
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the nodal connectivity and the coordinate array is generated in a different way

while constructing the finite element mesh.

× X

©

Figure 32:2 x 2 grid of Gauss points in the parent element

For one dimensional line elements, it can be mathematically proved that the

optimum points in the element for the derivative to be calculated are the ones

corresponding to the standard Ganssian quadrature points in the parent element.

Since these points are internal to an element, the derivatives of the solution cal-

culated there are unique and continuous. Extending this feature to the two di-

mensional case, we seek to develop a scheme for calculating the acoustic pressure

at the interior points of the elements corresponding to a standard 2 x 2 grid of

Gauss points in the parent element (see Figure 32).

The nodal velocity potential solutions (both mean flow and acoustic) are in-

terpolated at the Gauss points in an element using

nG

¢o(zs, y,) -- __, ¢_N_(zs,y,) (133a)
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ne

= ¢,N:(=g, (133b)
i=l

where (xg, yg) are the coordinates of the map of the Gauss points 1° in the element.

The derivatives of the potentials are then taken at the Gauss points by appro-

priately taking the derivatives of the element shape functions at the gauss points

since

"" aN_(x,,yg) (134a)

ax /=1

aN_(zo,Y,) (134b)
a¢(xg, yg) = _ ¢__ ar

Once the velocity potentials (both mean flow and acoustic perturbation) and their

derivatives have been calculated at the Gauss point grid inside the element, the

acoustic pressure is evaluated there using equation (130). The sound pressure level

contour plots from the data at the Gauss points give smoother curves and represent

the acoustic radiated field much better. This is reflected in Figures 33 through 35

where the sound pressure level curves have been plotted for the same combinations

of source frequencies and angular mode numbers as in Figures 26 through 31,

but using the data at the Gauss points. Therefore the averaging technique for

evaluating the nodal pressures as mentioned before seems to be quite inadequate

for the acoustic radiation problem especially for higher frequencies. The proper

and theoretically more rigorous way to obtain the nodal acoustic pressures is to

obtain the pressures at the Gauss points and then interpolate the nodal values

from them.

The next part of the study was aimed at investigating the effect of the geo-

metric position of the transition circle Cz in the mesh. If the transition circle is

very far away from the inlet, then, at realistic frequencies which are usually the

lOGauss points are _ctu_l]y in the parent element. They are mapped onto corresponding pointB

in the actual element.
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higher ones, the number of conventional finite elements radially in region II has

to be quite large to satisfy the number of elements per wavelength requirement.

If the transition circle can be brought closer to the inlet the number of elements

radially in region II needed to satisfy the number of elements per wavelength re-

quirement will lessen. In such a case, the wave envelope region III becomes larger,

but the number of wave envelope elements in that region does not have to increase

proportionally because these elements have inverse decay and exponential terms in

them to model the field due to a simple source. As the transition circle is brought

closer to the inlet, the number of degrees of freedom associated with the problem

drastically reduces, even at higher frequencies. Theoretically it cannot be brought

very close to the inlet because the field there does not behave as one due to a

harraonic acoustic monopole in uniform flow. Figures 26 through 35 show sound

pressure level curves with the transition circle Ci at 3.5 duct radius from the inlet.

Figures 36 and 37 show sound pressure level contours at r/, = 20.0 and m = 20

with the transition circle at 2.5 duct radius and 1.5 duct radius, respectively, from

the inlet. Comparing the results in Figures 35, 36 and 37 for _, = 20.0 and m = 20,

it is very surprising and also encouraging to observe that the the sound pressure

level contours get smoother as the transition circle is brought closer to the inlet,

even as close as 1.5 duct radius from the origin (the z-intercept of the transition

circle is at a nondimensional distance of 1.5 from the origin). Furthermore, a

drastic reduction in the number of degrees of freedom occurs. Figure 35 shows

level curves obtained from a mesh of 4666 elements (14349 dof) while Figures 36

and 37 show the same level curves obtained from meshes having 3441 elements

(10624 dof) and 2461 elements (7644 dof), respectively. As the transition circle is

brought in closer to the inlet the level curves become significantly smoothen along

with the tremendous reduction in the dimensionality of the problem. Even though

the transition circle is close to the inlet, the curves have a smooth reflection free
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transition from the conventional finite element region II to region Ill. We can infer

from this that though the wave envelope elements are meant for modeling the far

field, their shape functions which have the conventional finite element shape func-

tion expression in addition to the inverse decay and exponential terms, are also

capable of modeling the moderately near field outside the inlet. As the transition

circle is brought in closer, the angular resolution of the conventional finite element

mesh in region II increases. This probably contributes partly to the improvement

in results. However, in an attempt to reduce the dimensionality of the problem, it

will be incorrect to apply the "pc" termination (the Sommerfeld radiation bound-

ary condition) at a boundary quite close to the inlet. Further investigation needs

to be carried out to understand the phenomenon more clearly.

Referring to Section VI.B we notice that the acoustic boundary condition at

the portion of the ba_e Cb belonging to region IIisnot properly applied with the

hope that the errorsdue to itwillbe localized.But we observe that especiallyat

higher frequencies and higher angular mode numbers a significantlevelof sound

is radiated around the lip of the nacelle towards the baffle.The portion of the

bafflein region IIdoes not act as a reflectionfreeboundary and thereforecreates

incorrect standing wave patterns near the bai_le. Spurious reflectionsfrom the

bafflein region IIare alsoobserved at lower frequencies,but the intensityismuch

less. As the transitioncircleCI isbrought closer to the inlet,the part of the

bafflebelonging to region II becomes lessand thereforethe spurious reflections

reduce significantlyin intensitybecause the part of the bafflebelonging to region

Ill is reflectionfree. The reduction in dimensionality of the problem as well as

improvement in resultsas the transitioncircleis brought closer to the inletare

significantresultsof thisstudy.
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VII. CONCLUSIONS

Several improvements to the finite element modeling of acoustic radiation

from turbofan engine inlets have been presented. They are enumerated below:

• The finite element mesh has been improved in search of an improved solution. In

particular, the aspect ratios of the conventional finite elements in the moderately

near field (region II) have been maintained, especially in the main direction of

sound propagation. The number of conventional finite element regions outside

the nacelle was reduced to one thereby eliminating superfluous coding and also

obtaining some reduction in the total number of degrees of freedom in the mesh.

• The time invariant mean flow problem has been reformulated with new boundary

conditions and a proper solution technique has been incorporated.

• A finite element duct eigenvalue problem has been solved on the fan face mesh

and the resulting modal matrix and the eigenvalues have been used to incorporate

a source boundary condition on the fan face in the acoustic radiation problem.

• The acoustic velocity potential at the sound source has been modeled as a

combination of the positive and negative propagating duct modes evaluated by

the finite element duct eigenvalue problem. By employing this, a finite element

formulation of the boundary integral on the fan face has been obtained.

• In the post processing of the solution,the acoustic pressure was observed to

be discontinuous across inter-elementboundaries. The technique of averaging the

pressures at a node, calculated from each element sharing that node, was found to

give poor resultsespeciallyat higher frequencies.An improved way of evaluating

the acoustic pressure at the Gaussian quadrature points insidethe elements and

then interpolatingitto the nodes has significantlyimproved the results.
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* The geometric position of the transition circle bordering the conventional finite

element region and the wave envelope region was seen to be creating a significant

effect on the results. It was found out that the wave envelope elements were not

only capable of modeling the far field but also the moderately near field outside the

nacelle. Therefore, the transition circle could be brought in much closer to the inlet

than thought before, and this has lead to better results with a drastic reduction

in the number of degrees of freedom. This is probably the most significant result

of this study.

These contributions have been implemented in computer programs which are

capable of predicting the radiation pattern at frequencieswhich are comparable to

those of actual turbofan engines. With the current version of the computer pro-

grams itispossibleto accomodate 21000 degrees of freedom which would predict

the radiation pattern fairlywell at quite high frequencies (forexample, 77,- 35)

provided the transitionboundary circleisnot very far away from the inlet.Future

work should aim at imposing a proper and accurate boundary condition on the

bafflein the conventional finiteelement region IIin order to make itreflectionfree.

The phenomenon of improvement in the resultsas the transitioncircleisbrought

closerto the inletshould be investigatedin more detail. The representation of

the sound source in terms of the duct mode amplitudes may not be the best way

to model it. Alternative ways should be investigatedand the resultsshould be

compared with experimental data to see which model works best.
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APPENDIX A

USER'S MANUAL

A. DATA DESCRIPTION OF THE MESH GENERATION CODE

1. Input data The finite element mesh generation code PRATMESH not only

generates the finite element mesh for the problem but also solves the duct eigen-

value problem on the fan face mesh. Therefore the input data descriptions for these

two steps are included together. The program is dimensioned for working with

a maximum of 5000 eight node quadratic isoparametric elements, 21000 nodes,

150 boundary line elements on the combination of upper and lower surface of the

nacelle, 50 boundary line elements on the fan face and 125 boundary line elements

on the far field boundary. The input data file structure has distinct blocks of input

data referred to as cards. Each card begins on a new line and the input data on

the card is formatted. The record length is of a maximum of 80 characters. If the

data format requires more than 80 characters a card is continued on additional

lines. The input variables should be input in the file in the sequence given.

DescriptionVariable

NLINU

NLINI

NY

Format

15

15

15

[Card [

1 Number of three-node line elements to de-

scribethe upper surface of the nacelle

Number of three-node line elements to de-

scribe the lower surface of the nacelle

Number of elements along the duct radius

in region I, which is equal to the number of

three-node line elements on the fan face. The

fan face is the plane z = constant, at which

the input duct modal amplitudes are speci-

fied.
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[ Card I Variable

2

Format

NX2

NWEEL

NPRINT

NDONT

NCNTR

NCNTRI

NCNTR2

PCNT(I)

I5

I5

I5

I5

I5

I5

I5

6FlO.O

Description

Number of elements radially in region II

Number of wave envelope layers

= 0, do not write nodal coordinate array

= 1, write nodal coordinate array

= 0, do not write output data file

= 1, write output data file

= O, there isno centerbody

= I, there isa centerbody

Sequence number of the first line element on

the centerbody. It is the first element from

the intersection of the centerbody and the
fan face.

Sequence number of the last line element on

the centerbody. It is the element at the in-

tersection of the centerbody and the x-axis.

I = 1, NY; end node locations of the three-

node line elements lying along the fan face.

The node locations are given as fractions of

the fan face width and starting from the in-

tersection of the fan face and the lower sur-

face of the nacelle. The first node therefore

has a zero fractional distance and is not an

input. If there are 5 line elements along the

fan face then a typical input for this array

would be 0.2, 0.4, 0.65, 0.88, 1.00
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[ Card I Variable Format Description

3 ADSHPU(I, J, K)

4 _DSHPI(I, J, K)

5 CBSHPI(I, J, K)

6F10.0

6F10.0

6F10.0

I= 1, NLINU;J = 1,3;K =1,2

nodal coordinates of the three-node

line elements defining the upper sur-

face of the nacelle. I is the ele-

ment number, J is the local node

number, K = 1 defines x coordinate

value and K = 2 defines r coordinate

value. The elements are sequenced

from the baffie surface to the to the

tip of the nacelle. Each card has the

nodal coordinate information of one

line element. Therefore, the number

of records for this card will be the

number of line elements along the

upper surface of the nacelle

I= 1, NLINI;J = 1,3;K =1,2

nodal coordinates of the three-node

line elements defining the lower sur-

face of the nacelle. I is the ele-

ment number, J is the local node

number, K = 1 defines x coordinate

value and K = 2 defines r coordinate

value. The elements are sequenced

from the fan face to the tip of the

nacelle. The number of cards will

be the number of line elements along

the lower surface of the nacelle

I- 1, NLINI;J = 1,3;K =1,2

nodal coordinates of the three-node

line elements defining the center-

body and the centerline of the com-

putational domain. The array is

similar to that in cards 3 and 4 and

so also is the format.The elements

are sequenced from the fan face to

the intersection of the highlight cir-

cle with the x-axis.
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Card Variable Format Description

6 R2

RLAYER(I)

MT

NPOS

VMACH

F10.0

6F10.0

I5

I5

FlO.5

z-intercept of the outer bounding circle C_ of

region II in multiples of the inlet duct radius

I = 1, NWEEL

x-intercepts of the outer bounding circles of

the wave envelope layers in multiples of the

inlet duct radius

Angular mode number

Number of positive modes retained in the

modal matrix

Freestream flow Mach number outside the

nacelle (positive directed towards the inlet)

2. Output data PRATMESH has two output data files - unit 6 and 20. Data

file 6 is the printed output data file by default and is well documented in itself.

Therefore, it is not described here.The output data file 20 contains all the infor-

mation about the finite element mesh and serves as an input to the finite element

calculations in subsequent codes. The output data file structure, like input file unit

5, has records which are classified under the heading of different cards because of

the varied nature of input parameters. Each card begins on a new line and the

input data is formatted. The record length is of a maximum of 80 characters.
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Card Variable Format Description

2

NE 110

NL1 110

NL2 110

NL3 110

NNX1 110

NNX2 110

NNTH1 110

NNTH2 110

NNODE 110

NWEEL 110

Number of elements in the domain

Number of three-node line elements to de-

scribe the surface of the nacelle

Number of elements in region I along the

duct radius

Number of elements in region II or region III

in the angular direction

Number of nodes along x-axis in region I

Number of nodes radially in region II

Number of nodes in region I along the duct

radius

Number of nodes in region II in the angular

direction

Number of nodes in the domain

Number of wave envelope layers

104



Card Variable Format Description

3

4

NX1

NX2

NY

NY2A

NY2

NY3

NCNTR

NCNTR1

NCNTR2

NLC

II0

110

II0

II0

110

I10

IlO

II0

110

110

Number of elements along x-axis in region I

Number of elements in region II along the

radial direction

Number of three-node line elements along

the fan face

Number of three-node line elements along

the upper surface of the nacelle

Number ofelements in region II in the angu-

laxdirection

Number of elements in region III in the an-

gular direction

1 or 0 value deciding the presence or absence

of the centerbody

Sequence number of the firstcenterbody el-

ement

Sequence number of the lastcenterbody ele-

ment

Number of centerbody elements
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Card Variable

R2

6 RLAYER(1)

7 AN(I, J)

8 NETYPE(I)

9

I0

ii

12

AD(I, J, K)

ANLI(I, J)

ANL2(I, J)

ANL3(I, J)

Format

D15.8

4D15.8

7110

7110

4D15.8

7110

7II0

7110

Description

x intercept of the outer bounding circle

C, of region II

x-intercept of the outer bounding circles

of the wave envelope layers

Nodal connectivity array for the elements

I = element number, J = local node num-

ber

I= 1, NE

identification number of elements

nodal coordinate/topology array of the el-

ements

I = Element number, J = local node num-

ber, K = x or r coordinte specifier

Nodal connectivity array for the bound-

ary line elements along the nacelle surface

I = line element number, J = local node

number

Nodal connectivity array for the bound-

axy line elements along the fan face

I = line element number, J = local node

number

Nodal connectivity array for the bound-

ary line elements along the outer bound-

ing circle C_ of the domain

I = line element number, J = local node

number
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Card Variable Format

13 ANLC(I, J) 7110

14 ADLI(I, J, K)

15 ADL2(I, J, K)

16 ADL3(I, J, K)

17 ADLC(I, J, K)

18 PCNT(1)

19 MT

4D15.8

4D15.8

4D15.8

4D15.8

4D15.8

IlO

Description

Nodal connectivity array for the bound-

ary line elements along the centerbody

I = line element number, J = local node

number

Nodal coordinate array of the boundary

elements along the nacelle surface

I = element number, J = local node num-

ber, K = x or r coordinate specifier

Nodal coordinate array of the boundary

elements along fan face

I = element number, J = local node num-

ber, K = x or r coordinate specifier

Nodal coordinate array of the boundary

elements along Co_

I = element number, J = local node num-

ber, K = x or r coordinate specifier

Nodal coordinate array of the boundary

elements along centerbody

I = element number, J = localnode num-

ber, K = z or r coordinate specifier

I = 1, NNTH1; fractions in which the fan

face has been divided for input nodes (see

input data description)

Angular mode number
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_ Format

I10

NNEG II0
._.__.--.--,--=---

NVECT 110

20 VMACH D15.8

Description

Number of positive modes retained in the

modal matrix

Number of negative modes retained in the

modal matrix

Total number of positive and negative

modes retained in the modal matrix

Free.stream flow Mach number outside the

nacelle (positive directed towards the inlet)

21 DD(I, J) 4D15.8 I = 1, NNTH1; J = 1, NVECT

Truncated modal matrix from the finite el-

ement duct eigenvalue problem

22 VKAP(1) 4D15.8 I = 1, NPOS

Transverse eigenvalues of the annular duct

W

1. Input data The time invariant mean flow problem on the finite element mesh

is solved in the PRATFLOW code. The mesh information in the output file unit

20 from the PRATMESH program serves as an input to the PRATFLOW code.

The user input ['or this program is the data file unit 5. It has only one card and

the input data is formatted. The record is a maximum of 80 characters. The input

variables should be input in the file 5 in the sequence as described.
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Card Variable Format Description

NTYPE

PRINT1

PRINT2

NPLOT

NPRINT

15

15

15

15

15

= 1, calculates the mean flow velocity poten-

tial only for flow from infinity into the blank

inlet

= 2, calculates the velocity potential for inlet

flow alone

= 3, calculates both cases sequentially and

writes the solution vector to disk for use by

the superposition program

_: 0, beginning row and column of the as-

sembled stiffness matrix to be printed

= 0, do not print

_: O, final row and column of the assembled

stiffness matrix to be printed

= 0, do not print

- 0, contour plotting routine bypassed ma-

trix to be printed

= 1, plot contour level curves for the solution

vector

= 0, do not print nodal coordinate array

= 1, print nodal coordinate array

2. Output data The output data files from the PRATFLOW code are files -

unit 6 and 21. File 6 is well documented in itself and is not described here. File 21

contains the nodal mean flow velocity potential of problems II and I in that order.

It serves as an input to the PRATVEL program. In addition to the saved files 6

and 21, seven unformatted scratch files - units 1, 2, 4, 8, 15, 16 and 17 are used.

Files 15, 16, 17 are direct access and files 1, 2, 4, 8 are sequential access. Record
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lengths for the direct accessfiles 15, 16, and 17 are 36, 144 and 36 respectively.

The number of records in each direct accessfile is the number of elementsin the

domain.

C. DATA DESCRIPTION OF THE VELOCITY POTENTIAL

SUPERPOSITION CODE

1. Input data Problems I, II and III of the time invariant mean flow problem are

superposed in the PRATVEL program to obtain the mean flow velocity potential

at the nodes. Subsequent calculations to obtain the nodal mean flow velocity is

also carried out in this code. The finite element mesh information in the output

file unit 20 from the PRATMESH program serves as an input to the PRATVEL

code. The output data file unit 21 from the PRATFLOW code is another source

of input. It contains the nodal values of the velocity potential of problems II and

I of mean flow in that order. The user input for the PRATVEL code is data file

unit 5 which has only one card and the data is formatted. The input variables

should be input in file 5 in the sequence described.

Card Variable For_m__t Description

VMIN

CFS

RHOFS

F10.0

FIO.O

F10.0

Average compressible inlet Mach number at

fan face (positive directed towards inlet)

based on local speed of sound

Free stream speed of sound, outside the na-

celle

Free stream density of air, outside the nacelle
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2. Output data The output data files for the superposition program are files unit

6 and 22. Data file 6 is well documented in itself and hence is not described here.

File 22 serves as an input data file for the acoustic radiation program. It contains

some flow parameter values and the nodal values of the mean flow velocity. The

output data description in file 22 is given below. Each card of data begins on a

new line.

Card Variable

VMIN

CFS

RHOFS

CSTAG

RHOSTG

TZERO

CF

RHOF

Format

D15.8

D15.8

D15.8

D15.8

D15.8

D15.8

D15.8

D15.8

Description

Average compressible inlet Mach number at

fan face {positive directed towards inlet)

based on local speed of sound

Free stream speed of sound outside the na-

celle

Free stream density of air outside the nacelle

Stagnation speed of sound

Stagnation density

Stagnation temperature

Speed of sound at fan face

Density at fan face
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Card Variable

VOCFS(I, J)

zvx(I)

ZVR(1)

I Format

4D15.8

2D15.8

2D15.8

Description

I = 1, 2, J = Local node number

Nodal mean flow velocity values, I = 1 de-

fines x-velocity and I = 2 defines r-velocity

I = Global node number

Nodal mean flow z-component velocity val-

ues

I = Global node number

Nodal mean flow r-component velocity val-

sea

D. DATA DESCRIPTION OF THE ACOUSTIC RADIATION CODE

1. Input data There are two different versions of the acoustic radiation pro-

gram - PRATRADA and PRATRADB. PRATRADA is the version where

the nodal acoustic pressure has been evaluated by an averaging technique while

PRATRADB is the version where the acoustic pressure has been evaluated at the

Gauss points and not at the nodal points. Therefore the postprocessors of the two

versions are different but the finite element calculations are the same. The input

data files for the acoustic radiation program PRATRADA and PRATRADB are

files unit 5, 20 and 22. Data file 20 is the output of PRATMESH and contains

the finite element mesh information. File 22 is the output of PRATV EL described

before. The user input is in data file 5. The input data has been structured into

cards. Each card of data begins on a new line and the input data is formatted.

The acoustic radiation program is capable for running multiple cases. It contains

the data for all the cases with an alphanumeric input separating the data for any

two cases which determines whether the case is to be run or not.
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Format Description[Card

1

2

3

[Variable

HDR(1)

NSYM

ETAR

PRINT1

PRINT2

NPLOT

NCONT

14A4

IlO

FI0.5

15

15

15

15

I=1,14

Character*4; it is the control for multiple

cases; if HDR(1) = 'stop' the program stops

execution and hence it is at the beginning of

the data for each case

= 0, rectangular duct

= 1, circular or annular duct

Nondimensional frequency of the sound

source (_?, = wR/c,)

w = fan rotational speed in rad/sec

R = reference duct radius at the fan face

c, = freestream speed of sound outside the

nacelle

O, Beginning row and colunm in stiffness

matrices printed

= O, Beginning row and column in stiffness

matrices not printed

0, Final row and column in stiffness ma-

trices printed

= 0, Final row and column in stiffness ma-

trices not printed

> 0, levelcurves for the solution vector plot-

ted

-- 0, plotting routine bypassed

Number of levelcurves to be plotted
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Card

4

5

6

Variable Format

CMAXO F10.5

CMINO F10.5

ZAI(1) 6F10.5

NLINED I5

MBEGIN 15

ZADM(I) 6F10.5

Description

Value of maximum level curve

Value of minimum level curve

I = 1, NPOS; complex incident modal am-

plitudes, real and imaginary parts

Number of acoustically lined elements on the

inner surface of nacelle (if NLINED = 0,

there is no lining and lining impedances are

not required)

Element number (counted from fan face

along the inner nacelle surface) on which the

lining begins

I = 1, NLINED; admittances in the elements

on the nacelle inner surface (complex val-

ues}, real and imaginary parts

2. Output data The output file for the acoustic radiation codes PRATRADA

and PRATRADB is the file unit 6 which is well documented in itself and therefore

is not described here. In addition to the saved files, seven unformatted scratch

files - units 1, 2, 3, 4, 15, 16 and 17 are used. Files 15, 16, 17 are direct access

and files 1, 2, 3, 4 are sequential access. Record lengths for the direct access files

15, 16, and 17 are 36, 144 and 36 respectively. The number of records in each

direct access file is the number of elements in the domain. In PRATRADB, the

data for the acoustic pressure evaluated at the Gaussian quadrature points inside

the elements has been written to file 6. The user may write it to a separate file
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if he/she wishes to. It may then be used by some convenient plotting package

like TECPLOT to plot the sound pressure levels in the domain. The acoustic

pressure data at the Gauss points is written down element by element. In each

element there are four Gauss points. Therefore, the number of records for the

acoustic pressure data is four times the total number of elements in the domain.

The description of the acoustic pressure data evaluated at Gauss points follows.

Card Variable Format Description

XC(I, J, K)

RG(I, J, K)

PGAU[I, J, K)

lX,E14.7

2X,E14.7

2X,E14.7

I = element number; J, K = 1, 2; (J, K)

refers to a particular Gauss point in the 2

x 2 grid; x coordinate of the Gauss point

I = element number; J, K = 1, 2; (J, K)

refers to a particular Gauss point in the 2

x 2 grid; r coordinate of the Gauss point

I = element number; J, K = 1, 2; (J, K)

refers to a particular Gauss point in the 2

x 2 grid; acoustic pressure at the Gauss

point

E. DATA DESCRIPTION OF THE CUBIC SPLINE INTERPOLATION

PROGRAM

1. Input data This program is for generating the input data for nacelle and

centerbody geometry. The nacelle and centerbody geometry is generated by a

spline curve fit procedure using x and r coordinates of enough points to define

the shape of the outer nacelle, the inner nacelle, and the center body. Using the

spline information, the surfaces of the nacelle are discretized into llne elements

whose end points are defined. The center node of the elements is created from
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the knowledge of the end points. The curve fit is a natural cubic spline. The

cubic spline interpolation program prepares the input data for the mesh generation

program PRATMESH. Details of the scheme have been described in section III.

The input data is of free format. Each card of data begins on a new line.

Card Variable I

NELU

NELC1

NELC2

XBAF

XTIP

YTIP

XFAN

Description

Number of line elements describing the upper sur-

!ace of the nacelle; the number of this parameter is

one less than the number of points being input to

represent the surface (see FRACTU(I))

Number of line elements describing the centerbody

between fan face and centerbody tip; the number of

this parameter is one less than the number of points

being input to represent the surface (see FRAC 1 (I))

Number of line elements describing the centerline

between centerbody tip and intersection of highlight

circle with z-axis; the number of this parameter is

one less than the number of points being input to

represent the surface (seeFRAC2(1))

x-coordinate of the intersection of the baffle with

the upper surface of the nacelle

z-coordinate of the nacelle tip

r-coordinate of the nacelle tip

z-coordinate of the fan face
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[Card [ Variable

XCB

FRACTU(I)

FRACI(I)

FRAC2(I)

Description

x-coordinate of the centerbody tip

I -- 1, NELU + 1; Fractional distance of the end

nodes of the line elements on the upper nacelle sur-

face sequenced from baffle surface onwards (fraction

based on the entire length of the upper nacelle sur-

face)

I "- 1, NELC1 + 1; Fractional distance of the end

nodes of the line elements on the centerbody se-

quenced from fan face onwards (fraction based on

the entire length of the centerbody)

I = 1, NELC2 + 1; Fractional distance of the end
nodes of the line elements on the centerline se-

quenced from the centerbody tip to the highlight

circle (fraction is based on this distance along the

centerline)

2. Output data The output of thisprogram are the variablesADSHPU(I, J, K),

ADSHPI(I, J, K), CBSHPI(I, J, K) (seeinput data descriptionof MESHGEN)

written onto output fileunit 7 with the same format as the corresponding data in

input file5 of MESHGEN. In a typicalapplication,the splineprogram output

fileisimported intodata file5 for MESHGEN. A listingof the program follows.

F, CUBIC SPLINE INTERPOLATION PROGRAM LISTING

c******program for generating the input data for nacelle geometry*****

implicit real*8 (a-h,o-z)

dimension xnodu(200),yfiodu (200),xnodi(200),ynodi(200),xnodc (200)
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C

C

C

C

C

dimension ynodc (200),adshpu(lO0,3,2),adshpi(100,3,2)

dimension adshpc(lO0,3,2),fractu(200),frac i (100),frac2 (100)

xbaf = x coordinate of point where baffle starts

xtip = x coordinate of nacelle tip

ytip = y coordinate of nacelle tip

xfan = x coordinate of fan face

xcb = x coordinate of the end of centerbody

read(5,*) nelu, nelcl, nelc2

nelc = nelcl + nelc2

nodeu = 2,nelu + 1

nodec = 2,nelc + 1

nodecl = 2,nelcl + 1

nodec2 = 2,nelc2 + 1

read(S,*) xb_, xtip,ytip,xfan, xcb

read(5,*) (fractu(i),i=l,nelu+1)

read (5,,)(fracl(i),i=1,nelc1+ 1)

read(5,*) (frac2(i),i=1,nelc2+ 1)

c.....generating x coordinate nodal points on the upper nacellesurface

2O

do 20 i= I,nelu

xnodu(2.i-1) = xbM" + fractu(i).(xtip- xbaf)

xnodu(2,i+l) = xbaf + fractu(i+l).(xtip- xbaf)

xnodu(2*i) - (xnodu(2*i+l) + xnodu(2,i-l))/2.0dO

continue

callspline(nodeu,xnodu,ynodu)

do 30 i= 1,nelu

adshpu(i,l,l) = xnodu(2*i-l)

adshpu(i,1,2) = ynodu(2,i-1)

118



adshpu(i,2,1) = xnodu(2,i)

adshpu(i,2,2) = ynodu(2,i)

adshpu(i,3,1) = xnodu(2,i+l)

adshpu(i,3,2) = ynodu(2,i+l)

write(7,1001) adshpu(i,l,1),adshpu(i,l,2),adshpu(i,2,1),

& adshpu(i,2,2),adshpu(i,3,1),adshpu(i,3,2)

30 continue

c ...... generate the highlight circle

c ..... center of highlight circle

chc - xtip - ytip

c ..... radius of highlight circle

radhc = dsqrt(2.0dO,ytip,ytip)

c..intercept of highlight circle with the x-axis

xhci = chc + radhc

c ..... generating x coordinate nodal points on the center body

do 25 i = 1, nelcl

xnodc(2,i-l) -- xfan + fracl(i),(xcb - xfan}

xnodc(2,i+l) - xfan + fracl(i+l),(xcb - xfan)

xnodc(2,i) = (xnodc(2,i+l) + xnodc(2,i-1})/2.0dO

write(6,,) 'xnodc(',2,i+l,')=', xnodc(2,i+l)

25 continue

c ..... generating x coordinate nodal points on the centerline

II =0

do 31 i = nelcl + 1, nelc

II = ll + 1

xnodc(2,i-l) -- xcb + frac2(ll),(xhci - xcb)

xnodc(2,i+l) = xcb + frac2(ll+l),(xhci - xcb)
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xnodc(2*i) = (xnodc(2*i÷l) + xnodc(2,i-1))/2.0dO

write(6,*) 'xnodc(',2*i - 1,')=', xnodc(2,i- 1)

31 continue

call spline(nodec,xnodc,ynodc)

do 35 i = 1, nelc

adshpc(i,l,1) = xnodc(2,i-1)

adshpc(i,l,2) = ynodc(2*i-1)

adshpcti,2,1) = xnodc(2*i)

adshpc(i,2,2) = ynodc(2*i)

adshpc{i,3,1) = xnodc(2*i+l)

adshpc{i,3,2) = ynodc{2*i+l)

35 continue

¢

c .... compute a new set of fractions for the nodal points on the lower

c .... surface of the nacelle which have the same fractions as the

c..corresponding nodes on the c.b & centerline based on the entire length

dist = xtip - xfan

do 75 k = 1, nodec

fracti = (xnodc(k) - xfan)/(xhci- xfan)

xnodi(k) = xfan + fracti,dist

75 continue

c do 76 k = nodecl + 1, nodec

c fracti(k) = frac2(k)*{xhci - xcb)/(xhci - xfan)

c xnodi(k) = xfan + fracti(k)*dist

c 76 continue

call spline(nodec,xnodi,ynodi}

do 85 i = 1, nelc
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&

85

&

334

1001

adshpi(i,l,1) = xnodi(2,i-1)

adshpi(i,l,2) = ynodi(2,i-1)

adshpi(i,2,1) = xnodi(2*i)

adshpi(i,2,2) = ynodi(2.i)

adshpi(i,3,1) = xnodi(2,i+l)

adshpi(i,3,2) = ynodi(2,i+l)

write(7,1001) adshpi(i,l,1),adshpi(i,l,2),adshpi(i,2,1),

adshpi (i,2,2),adshp i(i,3,1) ,adshpi (i,3,2)

continue

do 334 i = 1, nelc

write(7,1001) adshpc (i,l,1),adshpc (i,l,2),adshpc (i,2,1),

adshpc(i,2,2),adshpc(i,3,1),adshpc(i,3,2)

continue

format (6f10.4)

stop

end

c to fit a curve through a set of points using cubic spline

c interpolation.

**********************************************************************

subroutine spline(nnode,pt _spl)

implicit real,8 (a-h,o-z)

dimension x(lO0),f(100) ,b (100),ed( 100),eu (100),el(100) ,dfp(100)

dimension pt(200), spl(200)

c ....... read the data points from the data file

read(5,,) n

read(5,,) (x(i),f(i),i--1,n+l)
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do 10 i = 2, n

if(i.eq.2) go to 6

el(i-I) = x(i)- x(i-1)

ca(i-l) = 2.oa+oo,(x(i+l) - x(i-1))

if(i.eq.n) go to 7

euCi-x) = xCi+l) - x(i)

b(i-1) = 6.0d+OO,(f(i+l) - f(i))/(x(i+l) - x(i))

+ 6.0d+OO,(f(i-1) - f(i))/(x(i) - x(i-1))

continue

nl=n-1

call tridag(nl,ed,eu,el,b)

write(6,,) 'the solution is'

write(6,.) (b(i),i=l,n-1)

alp(l) = o.oao

alp(n+1) = o.oao

do 70i= 1, n-1

alp(i+1) = b(i)

70 continue

do 75 k = 1, nnode

do 80 i = 1, n

if(pt (k).gt.x(i).and.pt(k).lt.x(i+ 1))then

spl(k) = dfp(i),((x(i+l)-pt(k))**3)/(6.0dO*(x(i+l)-x(i)))

& + dfp(i+l),((pt(k)-x(i))**3)/(6.0dO*(x(i+l)-x(i)))

& + (f(i)/(x(i+l)-x(i))

& - dfp(i),(x(i+ 1)-x(i))/6.0dO)*(x(i+l)-pt(k))

& + (f(i+l)/(x(i+l)-x(i)) - dfp(i+l),(x(i+l)-x(i))/6.0dO)

& ,(pt(k)-x(i))
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else if(pt(k).eq.x(i))then

spl(k) = f(i)

elseif(pt(k).eq.x(i+1))then

spl(k) = f(i+l)

else if(pt(k).gt.x(n+l))then

spl(k) = O.OdO

endif

80 continue

75 continue

write(6,,) 'thecalculated value is'

write(6,,) (spl(k),k=1,nnode)

return

end

C

subroutine tridag(nl,ed,eu,el,b)

implicit real,8 (a-h,o-z)

dimension ed(100) ,eu(100) ,el(100) ,b(100)

m--n1-1

do 1040 i -- 1,m

fa = el(i+l)/ed(i)

ed(i+ 1) - ed(i+l)- fa,eu(i)

b(i+l) = b(i+l) - fa*b(i)

1040 continue

b(nl) = b(nl)/ed(nl)

do 1070 i = 1,m

b(nl-i) = (b(nl-i)- eu(nl-i),b(nl-i+l))/ed(nl-i)
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1070 continue

return

end
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APPENDIX B

MATHEMATICAL NO TATIONS

_:fl--.R

¢:fl--.R 2

¢ : fl --_ C _

[0, ro]

V

U

hrl

= ¢ is a real valued function defined on the domain fl which

is one-dimensional

= ¢ is a real valued function defined on the domain fl which

is two-dimensional

= ¢ is a complex valued function defined on the domain I2 which

is two-dimensional

= an interval between and including the values of 0 and ro

= such that

= for every

= symbol representing union of two sets

= Hilbert space; the space of functions which are square

integrable, which, in other words, implies that the

functions are continuous, but their derivatives

are piecewise continuous
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ACOUSTIC RADIATION CODE

INSTALLATION NOTES

INTRODUCTORY REMARKS

The Acoustic Radiation Code is a FORTRAN program used to study far field radiation from

turbofan engines. It was developed for the IBM (tin) mainframe at the University of Missouri-

Rolla, under the direction of Professor Walter Eversman. It has subsequently been modified at

Hamilton Standard to run on Sun (tin) and Silicon Graphics Iris (tm) UNIX (tin) workstations.

The program consists of five separate modules. These are run, one after the other, in the order

of their listing in the next section. However, PRATPREH, the first of these, may not always
be used.

The purpose of these notes is to assist users in the installation of the code on either of the two

above-mentioned workstations. In the pages that follow, there is a brief description of the

modules making up the program and then brief descriptions of how to compile, run, and test
these modules.

For further details, refer to Appendix A.

ACOUSTIC RADIATION CODE MODI, iLE-_

Five modules have been provided for installation:

PRATPREH

Generates cards 3-5 of the PRATMESH.INP input to PRATMESHH (i.e.,

the coordinates of the element nodes for the upper nacelle, center body and
lower nacelle)

129



PRATMESHH

• Generatesthefinite elementmeshusedfor both flow andacousticsolutions

• Calculates the duct eigenvaluesand eigenfunctionsused for acoustic
calculations

PRATFLOWH

,, Obtains the potential flow solutions

PRATVELH

m, Provides a superposition of the solutions above with a uniform mean flow

to give the f'mal flow needed by PRATRADH

PRATRADH

• Generates the acoustic solution for two-dimensional or cylindrically

symmetric nacelles

Note that the equivalent University of Missouri-Rolla IBM (tm) mainframe versions of these

modules are designated PRATPRE, PRATMESH, PRATFLOW, PRATVEL, and PRATRADA.

An "H" for Hamilton has been added to the names of the workstation versions (or in the case

of PRATRADA, the final "A" has been changed to "H"), to distinguish between the two

versions.

7 o__c.o__ IP_IL 

PRATPREH

f77 -o pratpreh -O pratpreh, f

f77 -o pratpreh -O -old_rl pratpreh.f

PRATMESHH

f77 -o pratmeshh -O pratmeshh.f

f77 -o pratmeshh -O -old_rl pratmeshh.f

(Sun)

.(SGI)

(Sun)

(SGI)
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PRATFLOWH

f77 -o pratflowh -O pratflowh.f

f77 -o pmtflowh -O -old_rl pratflowh.f

PRATVELH

f77 -o pratvelh-O pratvelh,f

f77 -o pratvelh-O -old_rl pratvelh.f

PRATRADH

f77 -o pratradh -O pratradh.f

f77 -o pratradh -O -Olimit 1100 oold_rl pratradh.f

(Sun)

(SGI)

(Sun)

(SGI)

(Sun)

(SGI)

TO RUN

PRATPREH

(pratpreh < pratpre.inp > pratpre.out) >& pratpre.err &

(fort.Y) (fort. 6) (stderr)

Files Generated;

* fort.7

* pmtpre.out

* pratpre.err

- Cards 3-5 for pratmesh.inp

- Numeric output data

- System error messages

PRATMESHH

(pratmeshh < pratmesh.inp > pratmesh.out) >& pratmesh.err &

(fort.Y) (fort.6) (stderr)

Files Generated:

* fort. 14

* fort.20

* pratmesh.out

* pratmesh.err

- PostScript plot file

- Needed as input by all other modules

- Numeric output data

- System error messages

(3.3 Kb)

(9 Kb)

(450 Kb)

(732 Kb)

(360 Kb)
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PRATFLOWH

(pratflowh < pratflow.inp > pratflow.out) >& pratflow.err &

(fort.5) (fort.6) (stderr)

Note." fort.20, generated by PRATMESHH, must be

available as UNIT=20 input.

File_ Generated;

* fort.2-4, 8

& 5 tmp files

* fort. 14

* fort.21

* pratflow.out

* pratflow.err

- Work files; delete

the fort.2-4, 8 ones

at end of run

- PostScript plot file

- Needed as input by PRATVELH

- Numeric output data

- System error messages

PRATVELH

(pratvelh < pratvel.inp > pratvel.out) >& pratvel.err &

(fort.5) (fort.6) ($tderr)

Note: fort.20, generated by PRATMESHH, and fort.21,

generated by PRATFLOWH, must be available,

respectively, as UNIT=20 and UNIT=21 input.

Fil¢_ Generated:

* 4 tmp files

* fort. 14

* fort.22

* pratvel.out

* pratvel.err

- Work files

- PostScript plot file

- Needed as input by PRATRADH

- Numeric output data

- System error messages

PRATRADH

(pratradh < pratrad.inp > pratrad.out) >& pratrad.err &

(fort.5) (fort.6) (stderr)

fort.20, generated by PRATMESHH, and fort.22,

generated by PRATVELH, must be available,

respectively, as UNIT=20 and UNIT=22 input.

(6.5 Mb total)

(1.6 Mb)

(195 Kb)

(196 Kb)

(443 Kb total)

(513 Kb)

(700 Kb)

(13 Kb)
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.FilesGenerated;

* fort.3, 4 &

5 tmp files
* fort. 14

* fort.23 (and

fort.24-27,

one for each

additional case

that is run)

* pratrad.out

* pratrad.err

- Work files; delete the

fort 3, 4 ones at end of run

- PostScript plot file

- Used previously for additional plotting;

not needed for the present

setup, so can be deleted

- Numeric output data

- System error messages

(70 Mb total)

(1 Mb per case)

(15 Kb per case)

(107 Kb per case)

Note that the plot files, fort. 14, are easily plotted using a standard PostScript printer. They also
can be previewed on a monitor if a PostScript viewing utility is available.
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TEST CASE

A testcasehasbeenprovidedto checkeachof thefive AcousticRadiationCodemodules. For
testpurposes,PRATPREHcanbe run independently.However, theother programsshouldbe
run in sequencewith theoutput(i.e., fort.20, fort.21, fort.22) of onefeedinginto thenext. The

test input files to use have the same names as those used in the "To Run" instructions above

(i.e., pratpre.inp, pratmesh.inp, pratflow.inp, prarvel.inp, pratrad.inp).

Output data (fort.7) from the PRATPRE test run should be as follows:

0.0000 1.2000 0.0225 1.2000 0.0450 1.2000

0.0450 1,200o o.0&75 2.2000 0.0900 1.2ooo

0.0900 1.2000 0.1125 1.2000 0.1350 1.2000

0.1350 1.2000 0.1575 1.2000 0.1000 1.2000

0.1800 1.2000 0.2025 1.2000 0.2250 1.2000

0.2250 1.2000 0.2475 1.2000 0.2700 1.2000

0.2700 1.2000 0.2925 1.2000 0.3150 1.2000

0.3150 1.2000 0.3375 1.2000 0.3600 1.2000

0.3600 1.2000 0.3825 1.2000 0.4050 1,2000

0.4050 1.2000 0.4275 1.2000 0.4500 1.2000

0.4500 1.2000 0.4725 1.2000 0.4950 1.2000

0.4950 1.2000 0.5175 1.2000 0.5400 1.2000

0.5400 1.2000 0.5625 1.2000 0.5850 1.2000

0.5850 1.2000 0.6075 1.1999 0.6300 1.1995

0.6300 1.1995 0.6525 1.1965 0.6750 1.1968

0.6750 1,1968 0.6975 1.1946 0.7200 1.1517

0.7200 1.1917 0.7425 1,1880 0.7650 1.1035

0.7650 1.1835 0.7875 1.1781 0.8100 1.1714

0,8100 1,1714 0.8325 1.1632 0.8550 1.1527

0,8550 1,1527 0.8662 1.1460 0.8775 1.1381

0.0775 1.1381 0.6887 1.1269 0.9000 1.1000

0.0000 1.0000 0.0207 1.0000 0.0415 1.0000

0.0415 1.0000 0.0622 1.0000 0,0830 1.0000

0,0830 1.0000 0.1037 1.0000 0.1245 1.0000

0.1245 1.0000 0,1452 1.0000 0.1660 1.0000

0.1660 1.0000 0.1667 1.0000 0.2075 1.0000

0.2075 Io0000 0.2282 1.0000 0.2490 1.0000

0.2490 1.0000 0.2697 1.0000 0.2905 1.0000

0.2905 1.0000 0.3112 1.0000 0.3319 1.0000

0.3319 1.0000 0.3518 1.0000 0.3717 1.0000

0.3717 1.0000 0.3916 1.0000 0,4115 1.0000

0,4!15 1.0000 0.4314 1.0000 0.4512 1.0000

0.4512 1.0000 0.4711 1.0000 0.6910 1.0000

0.4910 1.0000 0.5109 1.0000 0.5308 1.0000

0.5308 1.0000 0.$506 1.0000 0.5705 1.0000

0.5705 1.0000 0.5904 1.0000 0.6103 1.0001

0.6103 1.0001 0.6302 1.0006 0.6501 1.0014

0.6501 1.0014 0.6699 1.0027 0.6096 1.0046

0.6898 1.0046 0.7097 1.0069 0.7296 1.0098

0.7296 1.0098 0.7495 1.0133 0.7693 1.0175

0.7693 1.0175 0.7092 1.0224 0.8091 1.0203

0.8091 1.0283 0.0290 1.0354 0.8489 1.0441

0.8489 1.0441 0.8588 1.0495 0.8688 1.0556

0.8688 1.0556 0.0844 1.0685 0.9000 1.1000

0.0000 0.3000 0.0312 0.2911 0.0625 0.2818

0.0625 0.2818 0.0938 0.2716 0.1250 0.2601

0.1250 0.2601 0.1562 0.2471 0.1875 0.2328

0.1875 0.2328 0.2108 0.2172 0.2500 0.2003

0.2500 0.2003 0.2812 0.1819 0.3125 0.1619

0,3125 0.1619 0.3438 0,1402 0.3750 0.1166

0,3750 .0.I166 0.4062 0.0911 0,437_ 0,0635

0.4375 0.0635 0.4688 0.0332 0.5000 0.0000

0.5000 0.0000 0.5299 0.0000 0.5599 0.0000

0.5599 0.0000 0.5898 0.0000 0.6198 0.0000

0.6198 0,0000 0.6497 0.0000 0,6797 0.0000

0.679_ 0.0000 0.7096 0.0000 0.7396 0.0000

0.7396 0.0000 0.7595 0.0000 0.7995 0.0000

0.7995 0.0000 0.8294 0.0000 0.8594 0.0000

0.8594 0.0000 0.8893 0.0000 0,9193 0.0000

0.9193 0.0000 0,9492 0.0000 0.9792 0.0000

0.9792 0,0000 1.0091 0.0000 1.0390 0.0000

1.0390 0.0000 1.0690 0.0000 1.0989 0,0000

1,0989 0.0000 1.1209 0,0000 1.1588 0.0000

1.1588 0.0000 1.1808 0.0000 1.2187 0.0000

1.2187 0.0000 1.2487 0.0000 1.2786 0.0000

1.2786 0.0000 1.2936 0.0000 1.3086 0,0000

1.3086 0.0000 1.3321 0.0000 1.3556 0.0000
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Outputplots from runsof the remainingmodulesshouldmatchthoseshownbelow. Note that
plots hereare reducedin size. The actualoneswill be 81/2"x 11".
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